Определение значения иммунофенотипических, цитогенетических и молекулярных маркеров у взрослых больных Т-клеточными лимфобластными лейкозами
https://doi.org/10.17650/1818-8346-2024-19-2-14-25
Аннотация
Введение. Современные протоколы программной комбинированной химиотерапии Т-клеточных острых лимфобластных лейкозов (Т-ОЛЛ) позволяют достичь 5-летней общей выживаемости 60–90 %, однако рецидивы и рефрактерные формы Т-ОЛЛ остаются некурабельными ситуациями.
Цель исследования – определить прогностическое значение иммунофенотипических и молекулярных маркеров у взрослых больных Т-ОЛЛ, получающих терапию по протоколу ОЛЛ-2016.
Материалы и методы. С декабря 2016 г. по июнь 2022 г. в исследование были включены 113 пациентов с впервые установленным диагнозом Т-ОЛЛ. У 104 (92 %) больных выполнено цитогенетическое исследование, у 43 (38 %) больных исследованы аномалии в генах IKZF1 и NOTCH1 методом фрагментного анализа.
Результаты. Самый неблагоприятный прогноз Т-ОЛЛ был у больных с вариантами ETP (Т-ОЛЛ из ранних Т-клеточных предшественников) и near-ETP: 3-летняя безрецидивная выживаемость в группе ETP составила 54 %, near-ETP – 33 % против 79 % у больных с вариантом TI/II, 89 % – с TIII, 75 % – с TIV. при ранних вариантах Т-ОЛЛ наиболее часто встречается аномальный кариотип: ETP – 80,7 %, near-ETP – 60 %. в гене NOTCH1 встречались изменения в 53 % случаев (у 23 из 43 больных), в гене IKZF1 в нашем исследовании при Т-ОЛЛ мутации не обнаружены. В группе с отсутствием аномалий NOTCH1 общая выживаемость была статистически значимо ниже, чем в группе с аномалиями: 52 % против 81 % (p = 0,05).
Заключение. Варианты Т-ОЛЛ ETP и near-ETP, отсутствие мутаций в гене NOTCH1 являются неблагоприятными факторами прогноза для больных Т-ОЛЛ.
Об авторах
А. Н. ВасильеваРоссия
Васильева Анастасия Николаевна.
125167 Москва, Новый Зыковский пр-д, 4
О. А. Алешина
Россия
125167 Москва, Новый Зыковский пр-д, 4
Е. С. Котова
Россия
125167 Москва, Новый Зыковский пр-д, 4
Б. В. Бидерман
Россия
125167 Москва, Новый Зыковский пр-д, 4
Т. Н. Обухова
Россия
125167 Москва, Новый Зыковский пр-д, 4
И. В. Гальцева
Россия
125167 Москва, Новый Зыковский пр-д, 4
В. Н. Двирнык
Россия
125167 Москва, Новый Зыковский пр-д, 4
Е. И. Захарько
Россия
125167 Москва, Новый Зыковский пр-д, 4
А. Б. Судариков
Россия
125167 Москва, Новый Зыковский пр-д, 4
Е. Н. Паровичникова
Россия
125167 Москва, Новый Зыковский пр-д, 4
Список литературы
1. Coustan-Smith E., Mullighan C.G., Onciu M. et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 2009;10(2):147–56. DOI: 10.1016/S1470-2045(08)70314-0
2. Wood B.L., Winter S.S., Dunsmore K.P. et al. T-lymphoblastic leukemia (T-ALL) shows excellent outcome, lack of significance of the early thymic precursor (ETP) immunophenotype, and validation of the prognostic value of end-induction minimal residual disease (MRD) in Children’s Oncology Group (COG) Study AALL0434. Blood 2016;127(15):1863–9. DOI: 10.1182/blood-2015-08-661702
3. Валиев Т.Т., Шервашидзе М.А., Осипова И.В. и др. Протокол ALL-IC BFM 2002: результаты лечения острого лимфобластного лейкоза у детей в рамках многоцентрового клинического исследования. Клиническая онкогематология. Фундаментальные исследования и клиническая практика 2022;15(2):119–29.
4. Morita K., Jain N., Kantarjian H. et al. Outcome of T-cell acute lymphoblastic leukemia/lymphoma: Focus on near-ETP phenotype and differential impact of nelarabine. Am J Hematol 2021;96(5):589–98. DOI: 10.1002/ajh.26144
5. Genescà E., Morgades M., González-Gil C. et al. Adverse prognostic impact of complex karyotype (≥3 cytogenetic alterations) in adult T-cell acute lymphoblastic leukemia (T-ALL). Leuk Res 2021;109:106612. DOI: 10.1016/j.leukres.2021.106612
6. Коркина Ю.С., Валиев Т.Т., Киргизов К.И. и др. Острый лейкоз из ранних Т-клеток-предшественников: вопросы диагностики, лечения, описание собственного клинического наблюдения. Российский журнал детской гематологии и онкологии 2022;9(4):107–13.
7. Abaza Y., M Kantarjian H., Faderl S. et al. Hyper-CVAD plus nelarabine in newly diagnosed adult T-cell acute lymphoblastic leukemia and T-lymphoblastic lymphoma. Am J Hematol 2018;93(1):91–9. DOI: 10.1002/ajh.24947
8. Marks D.I., Rowntree C. Management of adults with T-cell lymphoblastic leukemia. Blood 2017;129(9):1134–42. DOI: 10.1182/blood-2016-07-692608
9. Zheng R., Li M., Wang S., Liu Y. Advances of target therapy on NOTCH1 signaling pathway in T-cell acute lymphoblastic leukemia. Exp Hematol Oncol 2020;9(1):31. DOI: 10.1186/s40164-020-00187-x
10. Weng A.P., Ferrando A.A., Lee W. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004;306(5694):269–71. DOI: 10.1126/science.1102160
11. Clappier E., Collette S., Grardel N. et al. NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with T-cell acute lymphoblastic leukemia (T-ALL) treated on EORTC trials 58881 and 58951. Leukemia 2010;24(12):2023–31. DOI: 10.1038/leu.2010.205
12. Kox C., Zimmermann M., Stanulla M. et al. The favorable effect of activating NOTCH1 receptor mutations on long-term outcome in T-ALL patients treated on the ALL-BFM 2000 protocol can be separated from FBXW7 loss of function. Leukemia 2010;24(12):2005–13. DOI: 10.1038/leu.2010.203
13. Larson Gedman A., Chen Q., Kugel Desmoulin S. et al. The impact of NOTCH1, FBW7 and PTEN mutations on prognosis and downstream signaling in pediatric T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Leukemia 2009;23(8):1417–25. DOI: 10.1038/leu.2009.64
14. Zuurbier L., Homminga I., Calvert V. et al. NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols. Leukemia 2010;24(12):2014–22. DOI: 10.1038/leu.2010.204
15. Asnafi V., Buzyn A., Le Noir S. et al. NOTCH1/FBXW7 mutation identifies a large subgroup with favorable outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): a Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) study. Blood 2009;113(17):3918–24. DOI: 10.1182/blood-2008-10-184069
16. Baldus C.D., Thibaut J., Goekbuget N. et al. Prognostic implications of NOTCH1 and FBXW7 mutations in adult acute T-lymphoblastic leukemia. Haematologica 2009;94(10):1383–90. DOI: 10.3324/haematol.2008.005272
17. Jenkinson S., Koo K., Mansour M.R. et al. Impact of NOTCH1/ FBXW7 mutations on outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on the MRC UKALL 2003 trial. Leukemia 2013;27(1):41–7. DOI: 10.1038/leu.2012.176
18. Mansour M.R., Sulis M.L., Duke V. et al. Prognostic implications of NOTCH1 and FBXW7 mutations in adults with T-cell acute lymphoblastic leukemia treated on the MRC UKALLXII/ECOG E2993 protocol. J Clin Oncol 2009;27(26):4352–6. DOI: 10.1200/JCO.2009.22.0996
19. Wu C.Y., Li Y.L., Dong X.Y. et al. Characteristics and prognostic effects of NOTCH1/FBXW7 gene mutations in T-cell acute lymphoblastic leukemia patients. Zhonghua Yi Xue Za Zhi 2022; 102(25):1910–7. DOI: 10.3760/cma.j.cn112137-20211025-02358
20. Georgopoulos K., Bigby M., Wang J.H. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 1994;79(1):143–56. DOI: 10.1016/0092-8674(94)90407-3
21. Olsson L., Johansson B. Ikaros and leukaemia. Br J Haematol 2015;169(4):479–91. DOI: 10.1111/bjh.13342
22. Kuiper R.P., Waanders E., van der Velden V.H. et al. IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia 2010;24(7):1258–64. DOI: 10.1038/leu.2010.87
23. Rebollo A., Schmitt C. Ikaros, Aiolos and Helios: transcription regulators and lymphoid malignancies. Immunol Cell Biol 2003;81(3):171–5. DOI: 10.1046/j.1440-1711.2003.01159.x
24. Mullighan C.G., Su X., Zhang J. et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009;360(5):470–80. DOI: 10.1056/NEJMoa0808253
25. Mullighan C.G., Goorha S., Radtke I. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007;446(7137):758–64. DOI: 10.1038/nature05690
26. Kobitzsch B., Gökbuget N., Schwartz S. et al. Loss-of-function but not dominant-negative intragenic IKZF1 deletions are associated with an adverse prognosis in adult BCR-ABL-negative acute lymphoblastic leukemia. Haematologica 2017;102(10):1739–47. DOI: 10.3324/haematol.2016.161273
27. Marçais A., Jeannet R., Hernandez L. et al. Genetic inactivation of Ikaros is a rare event in human T-ALL. Leuk Res 2010;34(4):426–9. DOI: 10.1016/j.leukres.2009.09.012
28. Witkowski M.T., Cimmino L., Hu Y. et al. Activated Notch counteracts Ikaros tumor suppression in mouse and human T-cell acute lymphoblastic leukemia. Leukemia 2015;29(6):1301–11. DOI: 10.1038/leu.2015.27
29. Yali D., Bing H., Jonathon P. et al. Regulation of heterochromatin landscape in T-cell acute lymphoblastic leukemia. Blood 2021:138(1):2217. DOI: 10.1182/blood-2021-154388
30. Xia R., Cheng Y., Han X. et al. Ikaros proteins in tumor: current perspectives and new developments. Front Mol Biosci 2021;8:788440. DOI: 10.3389/fmolb.2021.788440
31. Mortuza F.Y., Papaioannou M., Moreira I.M. et al. Minimal residual disease tests provide an independent predictor of clinical outcome in adult acute lymphoblastic leukemia. J Clin Oncol 2002;20(4):1094–104. DOI: 10.1200/JCO.2002.20.4.1094
32. Pemmaraju N., Kantarjian H., Jorgensen J.L. et al. Significance of recurrence of minimal residual disease detected by multiparameter flow cytometry in patients with acute lymphoblastic leukemia in morphological remission. Am J Hematol 2017;92(3):279–85. DOI: 10.1002/ajh.24629
33. Xu M., Liu H., Liu Y. et al. Gene mutations and pretransplant minimal residual disease predict risk of relapse in adult patients after allogeneic hematopoietic stem-cell transplantation for T cell acute lymphoblastic leukemia. Leuk Lymphoma 2019;60(11):2744–53. DOI: 10.1080/10428194.2019.1597270
34. Wang H., Zhou Y., Huang X. et al. Minimal residual disease level determined by flow cytometry provides reliable risk stratification in adults with T-cell acute lymphoblastic leukaemia. Br J Haematol 2021;193(6):1096–104. DOI: 10.1111/bjh.17424
35. Гальцева И.В. Стратегия мониторинга минимальной остаточной болезни у больных острыми лейкозами методом мультипараметрической проточной цитометрии. Автореф. дис. … д-ра мед. наук. М., 2022. 45 с.
36. Конова З.В., Паровичникова Е.Н., Гальцева И.В. и др. Прогностическая значимость минимальной остаточной болезни перед трансплантацией аллогенных гемопоэтических стволовых клеток у больных острыми лейкозами. Гематология и трансфузиология 2021;66(4):539–55. DOI: 10.35754/0234-5730-2021-66-4-539-555
37. Bene M.C., Castoldi G., Knapp W. et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 1995;9(10):1783–6.
38. Miller S.A., Dykes D.D., Polesky H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988;16(3):1215. DOI: 10.1093/nar/16.3.1215
39. Caye A., Beldjord K., Mass-Malo K. et al. Breakpoint-specific multiplex polymerase chain reaction allows the detection of IKZF1 intragenic deletions and minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia. Haematologica 2013;98(4):597–601. DOI: 10.3324/haematol.2012.073965
40. Campregher P.V., Petroni R.C., Muto N.H. et al. A novel assay for the identification of NOTCH1 PEST domain mutations in chronic lymphocytic leukemia. Biomed Res Int 2016;2016:4247908. DOI: 10.1155/2016/4247908
41. Breit S., Stanulla M., Flohr T. et al. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood 2006;108(4):1151–7. DOI: 10.1182/blood-2005-12-4956
42. Trinquand A., Tanguy-Schmidt A., Ben Abdelali R. et al. Toward a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic risk classification of adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study. J Clin Oncol 2013;31(34):4333–42. DOI: 10.1200/JCO.2012.48.5292
43. Schrappe M., Valsecchi M.G., Bartram C.R. et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood 2011;118(8):2077–84. DOI: 10.1182/blood-2011-03-338707
44. Burns M.A., Place A.E., Stevenson K.E. et al. Identification of prognostic factors in childhood T-cell acute lymphoblastic leukemia: results from DFCI ALL Consortium Protocols 05-001 and 11-001. Pediatr Blood Cancer 2021;68(1):e28719. DOI: 10.1002/pbc.28719
45. Chonghaile T.N., Roderick J.E., Glenfield C. et al. Maturation stage of T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL dependence and sensitivity to ABT-199. Cancer Discov 2014;4(9):1074–87. DOI: 10.1158/2159-8290.CD-14-0353
46. Гаврилина О.А., Паровичникова Е.Н., Троицкая В.В. и др. Применение венетоклакса в сочетании с децитабином в лечении резистентных форм, рецидивов и персистенции МРБ при остром Т-лимфобластном лейкозе у взрослых. Гематология и трансфузиология 2020;65(1):64–5.
47. Parovichnikova E.N., Gavrilina O.A., Troitskaya V.V. et al. Venetoclax plus decitabine in the treatment of MRD-persistent and relapsed/refractory T-cell acute lymphoblastic leukemia. EHA 2020;294346:EP427.
Рецензия
Для цитирования:
Васильева А.Н., Алешина О.А., Котова Е.С., Бидерман Б.В., Обухова Т.Н., Гальцева И.В., Двирнык В.Н., Захарько Е.И., Судариков А.Б., Паровичникова Е.Н. Определение значения иммунофенотипических, цитогенетических и молекулярных маркеров у взрослых больных Т-клеточными лимфобластными лейкозами. Онкогематология. 2024;19(2):14-25. https://doi.org/10.17650/1818-8346-2024-19-2-14-25
For citation:
Vasileva A.N., Aleshina O.A., Kotova E.S., Biderman B.V., Obukhova T.N., Galtseva I.V., Dvirnyk V.N., Zakharko E.I., Sudarikov A.B., Parovichnikova E.N. Significance of immunophenotypic, cytogenetic, and molecular markers in adult patients with T-cell lymphoblastic leukemia. Oncohematology. 2024;19(2):14-25. (In Russ.) https://doi.org/10.17650/1818-8346-2024-19-2-14-25