Preview

Онкогематология

Расширенный поиск

Молекулярно-генетические аномалии у больных Т-клеточными острыми лимфобластными лейкозами: обзор литературы

https://doi.org/10.17650/1818-8346-2022-17-4-166-176

Аннотация

Т-клеточный острый лимфобластный лейкоз/лимфома (Т-Олл) – агрессивное гематологическое заболевание. Современные протоколы программной комбинированной химиотерапии позволяют достичь 5-летней общей выживаемости 60–90 % в разных возрастных группах, однако рецидивы и рефрактерные формы Т-Олл остаются некурабельными ситуациями. За последние десятилетия было проведено множество исследований, направленных на изучение патогенеза этого варианта лейкоза, и обнаружено, что в многоступенчатом процессе лейкемогенеза задействованы различные сигнальные пути. это открывает перспективы для таргетной терапии.
В настоящем обзоре мы предоставляем обновленную информацию о патогенезе T-Олл, возможностях для внедрения таргетной терапии и проблемах, которые еще предстоит решить.

Об авторах

А. Н. Васильева
ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России
Россия

125167 Москва, Новый Зыковский пр-д, 4



О. А. Алешина
ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России
Россия

125167 Москва, Новый Зыковский пр-д, 4



Б. В. Бидерман
ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России
Россия

125167 Москва, Новый Зыковский пр-д, 4



А. Б. Судариков
ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России
Россия

125167 Москва, Новый Зыковский пр-д, 4



Список литературы

1. Santiago R., Vairy S., Sinnett D. et al. Novel therapy for childhood acute lymphoblastic leukemia. Expert Opin Pharmacother 2017;18(11):1081–99. DOI: 10.1080/14656566.2017.1340938

2. Smith M.A., Seibel N.L., Altekruse S.F. et al. Outcomes for children and adolescents with cancer: challenges for the twenty­first century. J Clin Oncol 2010;28(15):2625–34. DOI: 10.1200/ JCO.2009.27.0421

3. Linabery A.M., Ross J.A. Trends in childhood cancer incidence in the U.S. (1992–2004). Cancer 2008;112(2):416–32. DOI: 10.1002/cncr.23169

4. Key Statistics for Acute Lymphocytic Leukemia (ALL). Available at: https://www.cancer.org/cancer/acute­lymphocytic­leukemia/about/key­statistics.html

5. Паровичникова Е.Н., Троицкая В.В., Соколов А.Н. и др. Промежуточные результаты по лечению острых Ph­негативных лимфобластных лейкозов у взрослых больных (итоги Российской исследовательской группы по лечению острых лимфобластных лейкозов (RALL)). Онкогематология 2014;9(3):6–15. DOI: 0.17650/1818­8346­2014­9­3­6­15

6. Dores G.M., Devesa S.S., Curtis R.E. et al. Acute leukemia incidence and patient survival among children and adults in the United States, 2001–2007. Blood 2012;119(1):34–43. DOI: 10.1182/blood­2011­04­347872

7. Pui C.H., Robison L.L., Look A.T. Acute lymphoblastic leukaemia. Lancet 2008;371(9617):1030–43. DOI: 10.1016/S0140­6736(08)60457­2

8. Look A.T. Oncogenic transcription factors in the human acute leukemias. Science 1997;278(5340):1059–64. DOI: 10.1126/ science.278.5340.1059

9. Begley C.G., Aplan P.D., Davey M.P. et al. Chromosomal translocation in a human leukemic stem­cell line disrupts the T­cell antigen receptor delta­chain diversity region and results in a previously unreported fusion transcript. Proc Natl Acad Sci USA 1989;86(6):2031–5. DOI: 10.1073/pnas.86.6.2031

10. Mellentin J.D., Smith S.D., Cleary M.L. Lyl­1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix­loop­helix DNA binding motif. Cell 1989;58(1):77–83. DOI: 10.1016/0092­8674(89)90404­2

11. Xia Y., Brown L., Yang C.Y. et al. TAL2, a helix­loop­helix gene activated by the (7;9)(q34;q32) translocation in human T­cell leukemia. Proc Natl Acad Sci USA 1991;88(24):11416–20. DOI: 10.1073/pnas.88.24.11416

12. Royer­Pokora B., Loos U., Ludwig W.D. TTG­2, a new gene encoding a cysteine­rich protein with the LIM motif, is overexpressed in acute T­cell leukaemia with the t(11;14)(p13;q11). Oncogene 1991;6(10):1887–93.

13. Kennedy M.A., Gonzalez­Sarmiento R., Kees U.R. et al. HOX11, a homeobox­containing T­cell oncogene on human chromosome 10q24. Proc Natl Acad Sci USA 1991;88(20):8900–4. DOI: 10.1073/pnas.88.20.8900

14. Bernard O.A., Busson­LeConiat M., Ballerini P. et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 2001;15(10):1495–504. DOI: 10.1038/sj.leu.2402249

15. Ferrando A.A., Neuberg D.S., Staunton J. et al. Gene expression sig­natures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002;1(1):75–87. DOI: 10.1016/s1535­6108(02)00018­1

16. Soulier J., Clappier E., Cayuela J.M. et al. HOXA genes are included in genetic and biologic networks defining human acute T­cell leukemia (T­ALL). Blood 2005;106(1):274–86. DOI: 10.1182/blood­2004­10­3900

17. Liu Y., Easton J., Shao Y. et al. The genomic landscape of pediatric and young adult T­lineage acute lymphoblastic leukemia. Nat Genet 2017;49(8):1211–8. DOI: 10.1038/ng.3909

18. Iacobucci I., Mullighan C.G. Genetic basis of acute lymphoblastic leukemia. J Clin Oncol 2017;35(9):975–83. DOI: 10.1200/ JCO.2016.70.7836

19. Belver L., Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer 2016;16(8):494–507. DOI: 10.1038/nrc.2016.63

20. Van Vlierberghe P., Pieters R., Beverloo H.B., Meijerink J.P. Molecular­genetic insights in paediatric T­cell acute lymphoblastic leukaemia. Br J Haematol 2008;143(2):153–68. DOI: 10.1111/j.1365­2141.2008.07314.x

21. Chiaretti S., Foà R. T­cell acute lymphoblastic leukemia. Haematologica 2009;94(2):160–2. DOI: 10.3324/haematol.2008.004150

22. Bongiovanni D., Saccomani V., Piovan E. Aberrant signaling pathways in T­cell acute lymphoblastic leukemia. Int J Mol Sci 2017;18(9):1904. DOI: 10.3390/ijms18091904

23. Tan T.K., Zhang C., Sanda T. Oncogenic transcriptional program driven by TAL1 in T­cell acute lymphoblastic leukemia. Int J Hematol 2019;109(1):5–17. DOI: 10.1007/s12185­018­2518­z

24. Park S.T., Sun X.H. The Tal1 oncoprotein inhibits E47­mediated transcription. Mechanism of inhibition. J Biol Chem 1998;273(12):7030–7. DOI: 10.1074/jbc.273.12.7030

25. Girardi T., Vicente C., Cools J., De Keersmaecker K. The genetics and molecular biology of T­ALL. Blood 2017;129(9):1113–23. DOI: 10.1182/blood­2016­10­706465

26. Valge­Archer V.E., Osada H., Warren A.J. et al. The LIM protein RBTN2 and the basic helix­loop­helix protein TAL1 are present in a complex in erythroid cells. Proc Natl Acad Sci USA 1994;91(18):8617–21. DOI: 10.1073/pnas.91.18.8617

27. Wadman I., Li J., Bash R.O. et al. Specific in vivo association be­tween the bHLH and LIM proteins implicated in human T cell leukemia. EMBO J 1994;13(20):4831–9. DOI: 10.1002/j.1460­2075.1994.tb06809.x

28. Wadman I.A., Osada H., Grütz G.G. et al. The LIM­only protein Lmo2 is a bridging molecule assembling an erythroid, DNA­binding complex which includes the TAL1, E47, GATA­1 and Ldb1/NLI proteins. EMBO J 1997;16(11):3145–57. DOI: 10.1093/emboj/16.11.3145

29. Jurata L.W., Gill G.N. Functional analysis of the nuclear LIM domain interactor NLI. Mol Cell Biol 1997;17(10):5688–98. DOI: 10.1128/MCB.17.10.5688

30. Bach I. The LIM domain: regulation by association. Mech Dev 2000;91(1–2):5–17. DOI: 10.1016/s0925­4773(99)00314­7

31. Grutz G., Forster A., Rabbitts T.H. Identification of the LMO4 gene encoding an interaction partner of the LIM­binding protein LDB1/ NLI1: a candidate for displacement by LMO proteins in T cell acute leukaemia. Oncogene 1998;17(21):2799–803. DOI: 10.1038/sj.onc.1202502

32. Van Vlierberghe P., van Grotel M., Beverloo H.B. et al. The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T­cell acute lymphoblastic leukemia. Blood 2006;108(10):3520–9. DOI: 10.1182/ blood­2006­04­019927

33. Van Vlierberghe P., Ferrando A. The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest 2012;122(10):3398–406. DOI: 10.1172/JCI61269

34. Dear T.N., Sanchez­Garcia I., Rabbitts T.H. The HOX11 gene encodes a DNA­binding nuclear transcription factor belonging to a distinct family of homeobox genes. Proc Natl Acad Sci USA 1993;90(10):4431–5. DOI: 10.1073/pnas.90.10.4431

35. Li L., Zhang J.A., Dose M. et al. A far downstream enhancer for murine Bcl11b controls its T­cell specific expression. Blood 2013;122(6):902–11. DOI: 10.1182/blood­2012­08­447839

36. Andersson E.R., Sandberg R., Lendahl U. Notch signaling: simplicity in design, versatility in function. Development 2011;138(17):3593–612. DOI: 10.1242/dev.063610

37. D’Souza B., Meloty­Kapella L., Weinmaster G. Canonical and non­canonical Notch ligands. Curr Top Dev Biol 2010;92: 73–129. DOI: 10.1016/S0070­2153(10)92003­6

38. Kopan R., Ilagan M.X. The canonical Notch signaling pathway: un­folding the activation mechanism. Cell 2009;137(2):216–33. DOI: 10.1016/j.cell.2009.03.045

39. Heitzler P. Biodiversity and noncanonical Notch signaling. Curr Top Dev Biol 2010;92:457–81. DOI: 10.1016/S0070­2153(10)92014­0

40. Weng A.P., Millholland J.M., Yashiro­Ohtani Y. et al. c­Myc is an important direct target of Notch1 in T­cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006;20(15):2096–109. DOI: 10.1101/gad.1450406

41. Herranz D., Ambesi­Impiombato A., Palomero T. et al. A NOTCH1­driven MYC enhancer promotes T cell development, trans­formation and acute lymphoblastic leukemia. Nat Med 2014;20(10):1130–7. DOI: 10.1038/nm.3665

42. Palomero T., Lim W.K., Odom D.T. et al. NOTCH1 directly regulates c­MYC and activates a feed­forward­loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA 2006;103(48):18261–6. DOI: 10.1073/pnas.0606108103

43. Clappier E., Collette S., Grardel N. et al. NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with T­cell acute lymphoblastic leukemia (T­ALL) treated on EORTC trials 58881 and 58951. Leukemia 2010;24(12):2023–31. DOI: 10.1038/leu.2010.205

44. Fryer C.J., White J.B., Jones K.A. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 2004;16(4):509–20. DOI: 10.1016/j.molcel.2004.10.014

45. Gupta­Rossi N., Le Bail O., Gonen H. et al. Functional interaction between SEL­10, an F­box protein, and the nuclear form of activated Notch1 receptor. J Biol Chem 2001;276(37):34371–8. DOI: 10.1074/jbc.M101343200

46. Oberg C., Li J., Pauley A. et al. The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel­10 homolog. J Biol Chem 2001;276(38):35847–53. DOI: 10.1074/jbc. M103992200

47. O’Neil J., Grim J., Strack P. et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gammasecretase inhibitors. J Exp Med 2007;204(8):1813–24. DOI: 10.1084/jem.20070876

48. Malumbres M., Barbacid M. Mammalian cyclin­dependent kinases. Trends Biochem Sci 2005;30(11):630–41. DOI: 10.1016/j.tibs.2005. 09.005

49. Ettl T., Schulz D., Bauer R.J. The Renaissance of cyclin dependent kinase inhibitors. Cancers (Basel) 2022;14(2):293. DOI: 10.3390/ cancers14020293

50. Weinberg R.A. The retinoblastoma protein and cell cycle control. Cell 1995;81(3):323–30. DOI: 10.1016/0092­8674(95)90385­2

51. Bernt K.M., Hunger S.P. Current concepts in pediatric Philadelphia chromosome­positive acute lymphoblastic leukemia. Front Oncol 2014;4:54. DOI: 10.3389/fonc.2014.00054

52. Hebert J., Cayuela J.M., Berkeley J., Sigaux F. Candidate tumorsuppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from Tbut not from B­cell lineage acute lymphoblastic leukemias. Blood 1994;84(12):4038–44. DOI: 10.1182/blood.V84.12.4038.bloodjournal84124038

53. Clappier E., Cuccuini W., Cayuela J.M. et al. Cyclin D2 dysregulation by chromosomal translocations to TCR loci in T­cell acute lymphoblastic leukemias. Leukemia 2006;20(1):82–6. DOI: 10.1038/sj.leu.2404008

54. Darnell J.E.Jr. STATs and gene regulation. Science 1997;277(5332):1630–5. DOI: 10.1126/science.277.5332.1630

55. Owen K.L., Brockwell N.K., Parker B.S. JAK­STAT signaling: a double­edged sword of immune regulation and cancer progression. Cancers (Basel) 2019;11(12):2002. DOI: 10.3390/cancers11122002

56. Hu X., Li J., Fu M. et al. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 2021;6(1):402. DOI: 10.1038/s41392­021­00791­1

57. Jiang Q., Li W.Q., Aiello F.B. et al. Cell biology of IL­7, a key lymphotrophin. Cytokine Growth Factor Rev 2005;16(4–5):513–33. DOI: 10.1016/j.cytogfr.2005.05.004

58. Mazzucchelli R., Durum S.K. Interleukin­7 receptor expression: intelligent design. Nat Rev Immunol 2007;7(2):144–54. DOI: 10.1038/nri2023

59. Degryse S., Cools J. JAK kinase inhibitors for the treatment of acute lymphoblastic leukemia. J Hematol Oncol 2015;8:91. DOI: 10.1186/s13045­015­0192­7

60. Zhang J., Ding L., Holmfeldt L. et al. The genetic basis of early T­cell precursor acute lymphoblastic leukaemia. Nature 2012;481(7380):157–63. DOI: 10.1038/nature10725

61. De Bock C.E., Cools J. JAK3 mutations and HOXA9 expression are important cooperating events in T­cell acute lymphoblastic leukemia. Mol Cell Oncol 2018;5(3):e1458014. DOI: 10.1080/23723556.2018.1458014

62. Gomez­Pinillos A., Ferrari A.C. mTOR signaling pathway and mTOR inhibitors in cancer therapy. Hematol Oncol Clin North Am 2012;26(3):483–505. DOI: 10.1016/j.hoc.2012.02.014

63. Brown E.J., Albers M.W., Shin T.B. et al. A mammalian protein targeted by G1­arresting rapamycin­receptor complex. Nature 1994;369(6483):756–8. DOI: 10.1038/369756a0

64. Chiu M.I., Katz H., Berlin V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci USA 1994;91(26):12574–8. DOI: 10.1073/pnas.91.26.12574

65. Sabers C.J., Martin M.M., Brunn G.J. et al. Isolation of a protein target of the FKBP12­rapamycin complex in mammalian cells. J Biol Chem 1995;270(2):815–22. DOI: 10.1074/jbc.270.2.815

66. Hay N., Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004;18(16):1926–45. DOI: 10.1101/ gad.1212704

67. Jiang B.H., Liu L.Z. Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment. Drug Resist Updat 2008;11(3):63–76. DOI: 10.1016/j.drup.2008.03.001

68. Proud C.G. Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 2007;403(2):217–34. DOI: 10.1042/BJ20070024

69. Jastrzebski K., Hannan K.M., Tchoubrieva E.B. et al. Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors 2007;25(4):209–26. DOI: 10.1080/08977190701779101

70. Красильников М.А., Жуков Н.В. Сигнальный путь mTOR: новая мишень терапии опухолей. Современная онкология 2010;12(2):9–16.

71. Vanhaesebroeck B., Guillermet­Guibert J., Graupera M., Bilanges B. The emerging mechanisms of isoform­specific PI3K signalling. Nat Rev Mol Cell Biol 2010;11(5):329–41. DOI: 10.1038/nrm2882

72. Vadas O., Burke J.E., Zhang X. et al. Structural basis for activation and inhibition of class I phosphoinositide 3­kinases. Sci Signal 2011;4(195):re2. DOI: 10.1126/scisignal.2002165

73. Hawkins P.T., Anderson K.E., Davidson K., Stephens L.R. Signalling through Class I PI3Ks in mammalian cells. Biochem Soc Trans 2006;34(Pt 5):647–62. DOI: 10.1042/BST0340647

74. Guimarães I.S., Tessarollo N.G., Lyra­Júnior P.C. et al. Targeting the PI3K/AKT/mTOR pathway in cancer cells. Updates on Cancer Treatment. Intech Open. DOI: 10.5772/61676

75. Franke T.F., Kaplan D.R., Cantley L.C., Toker A. Direct regulation of the AKT proto­oncogene product by phosphatidylinositol­3,4bisphosphate. Science 1997;275(5300):665–8. DOI: 10.1126/ science.275.5300.665

76. Engelman J.A., Luo J., Cantley L.C. The evolution of phosphatidylinositol 3­kinases as regulators of growth and metabolism. Nat Rev Genet 2006;7(8):606–19. DOI: 10.1038/nrg1879

77. Corvera S., Czech M.P. Direct targets of phosphoinositide 3­kinase products in membrane traffic and signal transduction. Trends Cell Biol 1998;8(11):442–6. DOI: 10.1016/s0962­8924(98)01366­x

78. Alessi D.R., Kozlowski M.T., Weng Q.P. et al. 3­Phosphoinositidedependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol 1998;8(2):69–81. DOI: 10.1016/s0960­9822(98)70037­5

79. Inoki K., Li Y., Zhu T. et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002;4(9):648–57. DOI: 10.1038/ncb839

80. Manning B.D., Tee A.R., Logsdon M.N. et al. Identification of the tuberous sclerosis complex­2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3­kinase/akt pathway. Mol Cell 2002;10(1):151–62. DOI: 10.1016/s1097­2765(02)00568­3

81. Kovacina K.S., Park G.Y., Bae S.S. et al. Identification of a prolinerich Akt substrate as a 14­3­3 binding partner. J Biol Chem 2003;278(12):10189–94. DOI: 10.1074/jbc.M210837200

82. Okkenhaug K., Vanhaesebroeck B. PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol 2003;3(4):317–30. DOI: 10.1038/nri1056

83. Palomero T., Sulis M.L., Cortina M. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T­cell leukemia. Nat Med 2007;13(10):1203–10. DOI: 10.1038/nm1636

84. Silva A., Yunes J.A., Cardoso B.A. et al. PTEN posttranslational in­activation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest 2008;118(11):3762–74. DOI: 10.1172/JCI34616

85. Schubbert S., Bollag G., Shannon K. Deregulated Ras signaling in developmental disorders: new tricks for an old dog. Curr Opin Genet Dev 2007;17(1):15–22. DOI: 10.1016/j.gde.2006.12.004

86. Tidyman W.E., Rauen K.A. The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev 2009;19(3):230–6. DOI: 10.1016/j.gde.2009.04.001

87. Chiaretti S., Zini G., Bassan R. Diagnosis and subclassification of acute lymphoblastic leukemia. Mediterr J Hematol Infect Dis 2014;6(1):e2014073. DOI: 10.4084/MJHID.2014.073

88. Von Lintig F.C., Huvar I., Law P. et al. Ras activation in normal white blood cells and childhood acute lymphoblastic leukemia. Clin Cancer Res 2000;6(5):1804–10.

89. Hagemeijer A., Graux C. ABL1 rearrangements in T­cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2010;49(4):299–308. DOI: 10.1002/gcc.20743

90. Ferrando A. Can one target T­cell ALL? Best Pract Res Clin Haematol 2018;31(4):361–6. DOI: 10.1016/j.beha.2018.10.001

91. Liu X., Xu Y., Han L., Yi Y. Reassessing the potential of Mybtargeted anti­cancer therapy. J Cancer 2018;9(7):1259–66. DOI: 10.7150/jca.23992

92. Ramsay R.G., Gonda T.J. MYB function in normal and cancer cells. Nat Rev Cancer 2008;8(7):523–34. DOI: 10.1038/nrc2439

93. Thomas M.D., Kremer C.S., Ravichandran K.S. et al. c­Myb is critical for B cell development and maintenance of follicular B cells. Immunity 2005;23(3):275–86. DOI: 10.1016/j.immuni. 2005.08.005

94. Adhikary S., Eilers M. Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 2005;6(8):635–45. DOI: 10.1038/nrm1703

95. Dang C.V. MYC on the path to cancer. Cell 2012;149(1):22–35. DOI: 10.1016/j.cell.2012.03.003

96. Erikson J., Finger L., Sun L. et al. Deregulation of c­myc by translocation of the alpha­locus of the T­cell receptor in T­cell leukemias. Science 1986;232(4752):884–6. DOI: 10.1126/science.3486470

97. Mathieu­Mahul D., Sigaux F., Zhu C. et al. A t(8;14)(q24;q11) translocation in a T­cell leukemia (L1­ALL) with c­myc and TcRalpha chain locus rearrangements. Int J Cancer 1986;38(6):835–40. DOI: 10.1002/ijc.2910380609

98. La Starza R., Borga C., Barba G. et al. Genetic profile of T­cell acute lymphoblastic leukemias with MYC translocations. Blood 2014;124(24):3577–82. DOI: 10.1182/blood­2014­06­578856

99. Liu H., Chi A.W., Arnett K.L. et al. Notch dimerization is required for leukemogenesis and T­cell development. Genes Dev 2010;24(21):2395–407. DOI: 10.1101/gad.1975210

100. Li Q., Pan S., Xie T., Liu H. MYC in T­cell acute lymphoblastic leukemia: functional implications and targeted strategies. Blood Sci 2021;3(3):65–70. DOI: 10.1097/BS9.0000000000000073

101. Takebe N., Nguyen D., Yang S.X. Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther 2014;141(2):140–9. DOI: 10.1016/j.pharmthera.2013.09.005


Рецензия

Для цитирования:


Васильева А.Н., Алешина О.А., Бидерман Б.В., Судариков А.Б. Молекулярно-генетические аномалии у больных Т-клеточными острыми лимфобластными лейкозами: обзор литературы. Онкогематология. 2022;17(4):166-176. https://doi.org/10.17650/1818-8346-2022-17-4-166-176

For citation:


Vasileva A.N., Aleshina O.A., Biderman B.V., Sudarikov A.B. Molecular genetic abnormalities in patients with T-cell acute lymphoblastic leukemia: a literature review. Oncohematology. 2022;17(4):166-176. (In Russ.) https://doi.org/10.17650/1818-8346-2022-17-4-166-176

Просмотров: 9230


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)