Молекулярно-генетические аномалии у больных Т-клеточными острыми лимфобластными лейкозами: обзор литературы
https://doi.org/10.17650/1818-8346-2022-17-4-166-176
Аннотация
Т-клеточный острый лимфобластный лейкоз/лимфома (Т-Олл) – агрессивное гематологическое заболевание. Современные протоколы программной комбинированной химиотерапии позволяют достичь 5-летней общей выживаемости 60–90 % в разных возрастных группах, однако рецидивы и рефрактерные формы Т-Олл остаются некурабельными ситуациями. За последние десятилетия было проведено множество исследований, направленных на изучение патогенеза этого варианта лейкоза, и обнаружено, что в многоступенчатом процессе лейкемогенеза задействованы различные сигнальные пути. это открывает перспективы для таргетной терапии.
В настоящем обзоре мы предоставляем обновленную информацию о патогенезе T-Олл, возможностях для внедрения таргетной терапии и проблемах, которые еще предстоит решить.
Об авторах
А. Н. ВасильеваРоссия
125167 Москва, Новый Зыковский пр-д, 4
О. А. Алешина
Россия
125167 Москва, Новый Зыковский пр-д, 4
Б. В. Бидерман
Россия
125167 Москва, Новый Зыковский пр-д, 4
А. Б. Судариков
Россия
125167 Москва, Новый Зыковский пр-д, 4
Список литературы
1. Santiago R., Vairy S., Sinnett D. et al. Novel therapy for childhood acute lymphoblastic leukemia. Expert Opin Pharmacother 2017;18(11):1081–99. DOI: 10.1080/14656566.2017.1340938
2. Smith M.A., Seibel N.L., Altekruse S.F. et al. Outcomes for children and adolescents with cancer: challenges for the twentyfirst century. J Clin Oncol 2010;28(15):2625–34. DOI: 10.1200/ JCO.2009.27.0421
3. Linabery A.M., Ross J.A. Trends in childhood cancer incidence in the U.S. (1992–2004). Cancer 2008;112(2):416–32. DOI: 10.1002/cncr.23169
4. Key Statistics for Acute Lymphocytic Leukemia (ALL). Available at: https://www.cancer.org/cancer/acutelymphocyticleukemia/about/keystatistics.html
5. Паровичникова Е.Н., Троицкая В.В., Соколов А.Н. и др. Промежуточные результаты по лечению острых Phнегативных лимфобластных лейкозов у взрослых больных (итоги Российской исследовательской группы по лечению острых лимфобластных лейкозов (RALL)). Онкогематология 2014;9(3):6–15. DOI: 0.17650/18188346201493615
6. Dores G.M., Devesa S.S., Curtis R.E. et al. Acute leukemia incidence and patient survival among children and adults in the United States, 2001–2007. Blood 2012;119(1):34–43. DOI: 10.1182/blood201104347872
7. Pui C.H., Robison L.L., Look A.T. Acute lymphoblastic leukaemia. Lancet 2008;371(9617):1030–43. DOI: 10.1016/S01406736(08)604572
8. Look A.T. Oncogenic transcription factors in the human acute leukemias. Science 1997;278(5340):1059–64. DOI: 10.1126/ science.278.5340.1059
9. Begley C.G., Aplan P.D., Davey M.P. et al. Chromosomal translocation in a human leukemic stemcell line disrupts the Tcell antigen receptor deltachain diversity region and results in a previously unreported fusion transcript. Proc Natl Acad Sci USA 1989;86(6):2031–5. DOI: 10.1073/pnas.86.6.2031
10. Mellentin J.D., Smith S.D., Cleary M.L. Lyl1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helixloophelix DNA binding motif. Cell 1989;58(1):77–83. DOI: 10.1016/00928674(89)904042
11. Xia Y., Brown L., Yang C.Y. et al. TAL2, a helixloophelix gene activated by the (7;9)(q34;q32) translocation in human Tcell leukemia. Proc Natl Acad Sci USA 1991;88(24):11416–20. DOI: 10.1073/pnas.88.24.11416
12. RoyerPokora B., Loos U., Ludwig W.D. TTG2, a new gene encoding a cysteinerich protein with the LIM motif, is overexpressed in acute Tcell leukaemia with the t(11;14)(p13;q11). Oncogene 1991;6(10):1887–93.
13. Kennedy M.A., GonzalezSarmiento R., Kees U.R. et al. HOX11, a homeoboxcontaining Tcell oncogene on human chromosome 10q24. Proc Natl Acad Sci USA 1991;88(20):8900–4. DOI: 10.1073/pnas.88.20.8900
14. Bernard O.A., BussonLeConiat M., Ballerini P. et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 2001;15(10):1495–504. DOI: 10.1038/sj.leu.2402249
15. Ferrando A.A., Neuberg D.S., Staunton J. et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002;1(1):75–87. DOI: 10.1016/s15356108(02)000181
16. Soulier J., Clappier E., Cayuela J.M. et al. HOXA genes are included in genetic and biologic networks defining human acute Tcell leukemia (TALL). Blood 2005;106(1):274–86. DOI: 10.1182/blood2004103900
17. Liu Y., Easton J., Shao Y. et al. The genomic landscape of pediatric and young adult Tlineage acute lymphoblastic leukemia. Nat Genet 2017;49(8):1211–8. DOI: 10.1038/ng.3909
18. Iacobucci I., Mullighan C.G. Genetic basis of acute lymphoblastic leukemia. J Clin Oncol 2017;35(9):975–83. DOI: 10.1200/ JCO.2016.70.7836
19. Belver L., Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer 2016;16(8):494–507. DOI: 10.1038/nrc.2016.63
20. Van Vlierberghe P., Pieters R., Beverloo H.B., Meijerink J.P. Moleculargenetic insights in paediatric Tcell acute lymphoblastic leukaemia. Br J Haematol 2008;143(2):153–68. DOI: 10.1111/j.13652141.2008.07314.x
21. Chiaretti S., Foà R. Tcell acute lymphoblastic leukemia. Haematologica 2009;94(2):160–2. DOI: 10.3324/haematol.2008.004150
22. Bongiovanni D., Saccomani V., Piovan E. Aberrant signaling pathways in Tcell acute lymphoblastic leukemia. Int J Mol Sci 2017;18(9):1904. DOI: 10.3390/ijms18091904
23. Tan T.K., Zhang C., Sanda T. Oncogenic transcriptional program driven by TAL1 in Tcell acute lymphoblastic leukemia. Int J Hematol 2019;109(1):5–17. DOI: 10.1007/s121850182518z
24. Park S.T., Sun X.H. The Tal1 oncoprotein inhibits E47mediated transcription. Mechanism of inhibition. J Biol Chem 1998;273(12):7030–7. DOI: 10.1074/jbc.273.12.7030
25. Girardi T., Vicente C., Cools J., De Keersmaecker K. The genetics and molecular biology of TALL. Blood 2017;129(9):1113–23. DOI: 10.1182/blood201610706465
26. ValgeArcher V.E., Osada H., Warren A.J. et al. The LIM protein RBTN2 and the basic helixloophelix protein TAL1 are present in a complex in erythroid cells. Proc Natl Acad Sci USA 1994;91(18):8617–21. DOI: 10.1073/pnas.91.18.8617
27. Wadman I., Li J., Bash R.O. et al. Specific in vivo association between the bHLH and LIM proteins implicated in human T cell leukemia. EMBO J 1994;13(20):4831–9. DOI: 10.1002/j.14602075.1994.tb06809.x
28. Wadman I.A., Osada H., Grütz G.G. et al. The LIMonly protein Lmo2 is a bridging molecule assembling an erythroid, DNAbinding complex which includes the TAL1, E47, GATA1 and Ldb1/NLI proteins. EMBO J 1997;16(11):3145–57. DOI: 10.1093/emboj/16.11.3145
29. Jurata L.W., Gill G.N. Functional analysis of the nuclear LIM domain interactor NLI. Mol Cell Biol 1997;17(10):5688–98. DOI: 10.1128/MCB.17.10.5688
30. Bach I. The LIM domain: regulation by association. Mech Dev 2000;91(1–2):5–17. DOI: 10.1016/s09254773(99)003147
31. Grutz G., Forster A., Rabbitts T.H. Identification of the LMO4 gene encoding an interaction partner of the LIMbinding protein LDB1/ NLI1: a candidate for displacement by LMO proteins in T cell acute leukaemia. Oncogene 1998;17(21):2799–803. DOI: 10.1038/sj.onc.1202502
32. Van Vlierberghe P., van Grotel M., Beverloo H.B. et al. The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric Tcell acute lymphoblastic leukemia. Blood 2006;108(10):3520–9. DOI: 10.1182/ blood200604019927
33. Van Vlierberghe P., Ferrando A. The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest 2012;122(10):3398–406. DOI: 10.1172/JCI61269
34. Dear T.N., SanchezGarcia I., Rabbitts T.H. The HOX11 gene encodes a DNAbinding nuclear transcription factor belonging to a distinct family of homeobox genes. Proc Natl Acad Sci USA 1993;90(10):4431–5. DOI: 10.1073/pnas.90.10.4431
35. Li L., Zhang J.A., Dose M. et al. A far downstream enhancer for murine Bcl11b controls its Tcell specific expression. Blood 2013;122(6):902–11. DOI: 10.1182/blood201208447839
36. Andersson E.R., Sandberg R., Lendahl U. Notch signaling: simplicity in design, versatility in function. Development 2011;138(17):3593–612. DOI: 10.1242/dev.063610
37. D’Souza B., MelotyKapella L., Weinmaster G. Canonical and noncanonical Notch ligands. Curr Top Dev Biol 2010;92: 73–129. DOI: 10.1016/S00702153(10)920036
38. Kopan R., Ilagan M.X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009;137(2):216–33. DOI: 10.1016/j.cell.2009.03.045
39. Heitzler P. Biodiversity and noncanonical Notch signaling. Curr Top Dev Biol 2010;92:457–81. DOI: 10.1016/S00702153(10)920140
40. Weng A.P., Millholland J.M., YashiroOhtani Y. et al. cMyc is an important direct target of Notch1 in Tcell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006;20(15):2096–109. DOI: 10.1101/gad.1450406
41. Herranz D., AmbesiImpiombato A., Palomero T. et al. A NOTCH1driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat Med 2014;20(10):1130–7. DOI: 10.1038/nm.3665
42. Palomero T., Lim W.K., Odom D.T. et al. NOTCH1 directly regulates cMYC and activates a feedforwardloop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA 2006;103(48):18261–6. DOI: 10.1073/pnas.0606108103
43. Clappier E., Collette S., Grardel N. et al. NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with Tcell acute lymphoblastic leukemia (TALL) treated on EORTC trials 58881 and 58951. Leukemia 2010;24(12):2023–31. DOI: 10.1038/leu.2010.205
44. Fryer C.J., White J.B., Jones K.A. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 2004;16(4):509–20. DOI: 10.1016/j.molcel.2004.10.014
45. GuptaRossi N., Le Bail O., Gonen H. et al. Functional interaction between SEL10, an Fbox protein, and the nuclear form of activated Notch1 receptor. J Biol Chem 2001;276(37):34371–8. DOI: 10.1074/jbc.M101343200
46. Oberg C., Li J., Pauley A. et al. The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel10 homolog. J Biol Chem 2001;276(38):35847–53. DOI: 10.1074/jbc. M103992200
47. O’Neil J., Grim J., Strack P. et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gammasecretase inhibitors. J Exp Med 2007;204(8):1813–24. DOI: 10.1084/jem.20070876
48. Malumbres M., Barbacid M. Mammalian cyclindependent kinases. Trends Biochem Sci 2005;30(11):630–41. DOI: 10.1016/j.tibs.2005. 09.005
49. Ettl T., Schulz D., Bauer R.J. The Renaissance of cyclin dependent kinase inhibitors. Cancers (Basel) 2022;14(2):293. DOI: 10.3390/ cancers14020293
50. Weinberg R.A. The retinoblastoma protein and cell cycle control. Cell 1995;81(3):323–30. DOI: 10.1016/00928674(95)903852
51. Bernt K.M., Hunger S.P. Current concepts in pediatric Philadelphia chromosomepositive acute lymphoblastic leukemia. Front Oncol 2014;4:54. DOI: 10.3389/fonc.2014.00054
52. Hebert J., Cayuela J.M., Berkeley J., Sigaux F. Candidate tumorsuppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from Tbut not from Bcell lineage acute lymphoblastic leukemias. Blood 1994;84(12):4038–44. DOI: 10.1182/blood.V84.12.4038.bloodjournal84124038
53. Clappier E., Cuccuini W., Cayuela J.M. et al. Cyclin D2 dysregulation by chromosomal translocations to TCR loci in Tcell acute lymphoblastic leukemias. Leukemia 2006;20(1):82–6. DOI: 10.1038/sj.leu.2404008
54. Darnell J.E.Jr. STATs and gene regulation. Science 1997;277(5332):1630–5. DOI: 10.1126/science.277.5332.1630
55. Owen K.L., Brockwell N.K., Parker B.S. JAKSTAT signaling: a doubleedged sword of immune regulation and cancer progression. Cancers (Basel) 2019;11(12):2002. DOI: 10.3390/cancers11122002
56. Hu X., Li J., Fu M. et al. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 2021;6(1):402. DOI: 10.1038/s41392021007911
57. Jiang Q., Li W.Q., Aiello F.B. et al. Cell biology of IL7, a key lymphotrophin. Cytokine Growth Factor Rev 2005;16(4–5):513–33. DOI: 10.1016/j.cytogfr.2005.05.004
58. Mazzucchelli R., Durum S.K. Interleukin7 receptor expression: intelligent design. Nat Rev Immunol 2007;7(2):144–54. DOI: 10.1038/nri2023
59. Degryse S., Cools J. JAK kinase inhibitors for the treatment of acute lymphoblastic leukemia. J Hematol Oncol 2015;8:91. DOI: 10.1186/s1304501501927
60. Zhang J., Ding L., Holmfeldt L. et al. The genetic basis of early Tcell precursor acute lymphoblastic leukaemia. Nature 2012;481(7380):157–63. DOI: 10.1038/nature10725
61. De Bock C.E., Cools J. JAK3 mutations and HOXA9 expression are important cooperating events in Tcell acute lymphoblastic leukemia. Mol Cell Oncol 2018;5(3):e1458014. DOI: 10.1080/23723556.2018.1458014
62. GomezPinillos A., Ferrari A.C. mTOR signaling pathway and mTOR inhibitors in cancer therapy. Hematol Oncol Clin North Am 2012;26(3):483–505. DOI: 10.1016/j.hoc.2012.02.014
63. Brown E.J., Albers M.W., Shin T.B. et al. A mammalian protein targeted by G1arresting rapamycinreceptor complex. Nature 1994;369(6483):756–8. DOI: 10.1038/369756a0
64. Chiu M.I., Katz H., Berlin V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci USA 1994;91(26):12574–8. DOI: 10.1073/pnas.91.26.12574
65. Sabers C.J., Martin M.M., Brunn G.J. et al. Isolation of a protein target of the FKBP12rapamycin complex in mammalian cells. J Biol Chem 1995;270(2):815–22. DOI: 10.1074/jbc.270.2.815
66. Hay N., Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004;18(16):1926–45. DOI: 10.1101/ gad.1212704
67. Jiang B.H., Liu L.Z. Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment. Drug Resist Updat 2008;11(3):63–76. DOI: 10.1016/j.drup.2008.03.001
68. Proud C.G. Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 2007;403(2):217–34. DOI: 10.1042/BJ20070024
69. Jastrzebski K., Hannan K.M., Tchoubrieva E.B. et al. Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors 2007;25(4):209–26. DOI: 10.1080/08977190701779101
70. Красильников М.А., Жуков Н.В. Сигнальный путь mTOR: новая мишень терапии опухолей. Современная онкология 2010;12(2):9–16.
71. Vanhaesebroeck B., GuillermetGuibert J., Graupera M., Bilanges B. The emerging mechanisms of isoformspecific PI3K signalling. Nat Rev Mol Cell Biol 2010;11(5):329–41. DOI: 10.1038/nrm2882
72. Vadas O., Burke J.E., Zhang X. et al. Structural basis for activation and inhibition of class I phosphoinositide 3kinases. Sci Signal 2011;4(195):re2. DOI: 10.1126/scisignal.2002165
73. Hawkins P.T., Anderson K.E., Davidson K., Stephens L.R. Signalling through Class I PI3Ks in mammalian cells. Biochem Soc Trans 2006;34(Pt 5):647–62. DOI: 10.1042/BST0340647
74. Guimarães I.S., Tessarollo N.G., LyraJúnior P.C. et al. Targeting the PI3K/AKT/mTOR pathway in cancer cells. Updates on Cancer Treatment. Intech Open. DOI: 10.5772/61676
75. Franke T.F., Kaplan D.R., Cantley L.C., Toker A. Direct regulation of the AKT protooncogene product by phosphatidylinositol3,4bisphosphate. Science 1997;275(5300):665–8. DOI: 10.1126/ science.275.5300.665
76. Engelman J.A., Luo J., Cantley L.C. The evolution of phosphatidylinositol 3kinases as regulators of growth and metabolism. Nat Rev Genet 2006;7(8):606–19. DOI: 10.1038/nrg1879
77. Corvera S., Czech M.P. Direct targets of phosphoinositide 3kinase products in membrane traffic and signal transduction. Trends Cell Biol 1998;8(11):442–6. DOI: 10.1016/s09628924(98)01366x
78. Alessi D.R., Kozlowski M.T., Weng Q.P. et al. 3Phosphoinositidedependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol 1998;8(2):69–81. DOI: 10.1016/s09609822(98)700375
79. Inoki K., Li Y., Zhu T. et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002;4(9):648–57. DOI: 10.1038/ncb839
80. Manning B.D., Tee A.R., Logsdon M.N. et al. Identification of the tuberous sclerosis complex2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3kinase/akt pathway. Mol Cell 2002;10(1):151–62. DOI: 10.1016/s10972765(02)005683
81. Kovacina K.S., Park G.Y., Bae S.S. et al. Identification of a prolinerich Akt substrate as a 1433 binding partner. J Biol Chem 2003;278(12):10189–94. DOI: 10.1074/jbc.M210837200
82. Okkenhaug K., Vanhaesebroeck B. PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol 2003;3(4):317–30. DOI: 10.1038/nri1056
83. Palomero T., Sulis M.L., Cortina M. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in Tcell leukemia. Nat Med 2007;13(10):1203–10. DOI: 10.1038/nm1636
84. Silva A., Yunes J.A., Cardoso B.A. et al. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest 2008;118(11):3762–74. DOI: 10.1172/JCI34616
85. Schubbert S., Bollag G., Shannon K. Deregulated Ras signaling in developmental disorders: new tricks for an old dog. Curr Opin Genet Dev 2007;17(1):15–22. DOI: 10.1016/j.gde.2006.12.004
86. Tidyman W.E., Rauen K.A. The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev 2009;19(3):230–6. DOI: 10.1016/j.gde.2009.04.001
87. Chiaretti S., Zini G., Bassan R. Diagnosis and subclassification of acute lymphoblastic leukemia. Mediterr J Hematol Infect Dis 2014;6(1):e2014073. DOI: 10.4084/MJHID.2014.073
88. Von Lintig F.C., Huvar I., Law P. et al. Ras activation in normal white blood cells and childhood acute lymphoblastic leukemia. Clin Cancer Res 2000;6(5):1804–10.
89. Hagemeijer A., Graux C. ABL1 rearrangements in Tcell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2010;49(4):299–308. DOI: 10.1002/gcc.20743
90. Ferrando A. Can one target Tcell ALL? Best Pract Res Clin Haematol 2018;31(4):361–6. DOI: 10.1016/j.beha.2018.10.001
91. Liu X., Xu Y., Han L., Yi Y. Reassessing the potential of Mybtargeted anticancer therapy. J Cancer 2018;9(7):1259–66. DOI: 10.7150/jca.23992
92. Ramsay R.G., Gonda T.J. MYB function in normal and cancer cells. Nat Rev Cancer 2008;8(7):523–34. DOI: 10.1038/nrc2439
93. Thomas M.D., Kremer C.S., Ravichandran K.S. et al. cMyb is critical for B cell development and maintenance of follicular B cells. Immunity 2005;23(3):275–86. DOI: 10.1016/j.immuni. 2005.08.005
94. Adhikary S., Eilers M. Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 2005;6(8):635–45. DOI: 10.1038/nrm1703
95. Dang C.V. MYC on the path to cancer. Cell 2012;149(1):22–35. DOI: 10.1016/j.cell.2012.03.003
96. Erikson J., Finger L., Sun L. et al. Deregulation of cmyc by translocation of the alphalocus of the Tcell receptor in Tcell leukemias. Science 1986;232(4752):884–6. DOI: 10.1126/science.3486470
97. MathieuMahul D., Sigaux F., Zhu C. et al. A t(8;14)(q24;q11) translocation in a Tcell leukemia (L1ALL) with cmyc and TcRalpha chain locus rearrangements. Int J Cancer 1986;38(6):835–40. DOI: 10.1002/ijc.2910380609
98. La Starza R., Borga C., Barba G. et al. Genetic profile of Tcell acute lymphoblastic leukemias with MYC translocations. Blood 2014;124(24):3577–82. DOI: 10.1182/blood201406578856
99. Liu H., Chi A.W., Arnett K.L. et al. Notch dimerization is required for leukemogenesis and Tcell development. Genes Dev 2010;24(21):2395–407. DOI: 10.1101/gad.1975210
100. Li Q., Pan S., Xie T., Liu H. MYC in Tcell acute lymphoblastic leukemia: functional implications and targeted strategies. Blood Sci 2021;3(3):65–70. DOI: 10.1097/BS9.0000000000000073
101. Takebe N., Nguyen D., Yang S.X. Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther 2014;141(2):140–9. DOI: 10.1016/j.pharmthera.2013.09.005
Рецензия
Для цитирования:
Васильева А.Н., Алешина О.А., Бидерман Б.В., Судариков А.Б. Молекулярно-генетические аномалии у больных Т-клеточными острыми лимфобластными лейкозами: обзор литературы. Онкогематология. 2022;17(4):166-176. https://doi.org/10.17650/1818-8346-2022-17-4-166-176
For citation:
Vasileva A.N., Aleshina O.A., Biderman B.V., Sudarikov A.B. Molecular genetic abnormalities in patients with T-cell acute lymphoblastic leukemia: a literature review. Oncohematology. 2022;17(4):166-176. (In Russ.) https://doi.org/10.17650/1818-8346-2022-17-4-166-176