Preview

Oncohematology

Advanced search

Immunophenotypic investigation of infant acute lymphoblastic leukemia

https://doi.org/10.17650/1818-8346-2012-7-2-14-24

Abstract

Aim of the study – immunophenotype description of infant acute lymphoblastic leukemia (ALL). 64 patients (29 boys and 35 girls) with acute leukemia (AL) aged from 0 to 11 months were included in the current study. ALL was found less frequently in infants than in older children (67.19 % and 87.69 %, respectively). BI-ALL was the most common immunological ALL type (60.46 %) in infant ALL, while BII-ALL was notably less frequent compared with other age groups (30.23 %). Significant immunophenotypic differences were observed in patients with and without MLL gene rearrangements. Number of cases in those tumor cells expressed CD10, CD20, CD45, CD133, CD15, NG2 varied between MLL-positive and MLL-negative groups. CD10- and CD20-negativity, high CD45, CD15, CD65 and NG2 expression were immunophenotypic signatures of MLL-rearranged infant ALL, although NG2 had the highest diagnostic efficacy. High CD34 and CD65 expression was frequently associated with presence of MLL-AF4 fusion gene. Thus infants’ B-cell precursor ALL immunophenotype differs significantly due to the presence of MLL gene rearrangements. Diagnostic immunophenotyping of infants’ ALL allows predicting presence of MLL rearrangements and NG2 is the most applicable single marker.

About the Authors

A. M. Popov
Pediatric Oncology and Hematology Centre, Regional Children’s Hospital Research Institute of Medical Cell Technologies
Russian Federation


G. A. Tsaur
Pediatric Oncology and Hematology Centre, Regional Children’s Hospital Research Institute of Medical Cell Technologies
Russian Federation


T. Yu. Verzhbitskaya
Pediatric Oncology and Hematology Centre, Regional Children’s Hospital Research Institute of Medical Cell Technologies
Russian Federation


O. V. Streneva
Pediatric Oncology and Hematology Centre, Regional Children’s Hospital Research Institute of Medical Cell Technologies
Russian Federation


E. V. Shorikov
Pediatric Oncology and Hematology Centre, Regional Children’s Hospital Research Institute of Medical Cell Technologies
Russian Federation


L. I. Saveliev
Pediatric Oncology and Hematology Centre, Regional Children’s Hospital Research Institute of Medical Cell Technologies Ural State Medical Academy
Russian Federation


L. G. Fechina
Pediatric Oncology and Hematology Centre, Regional Children’s Hospital Research Institute of Medical Cell Technologies
Russian Federation


References

1. Stanula M., Schrappe M. Treatment of childhood acute lymphoblastic leukemia. Semin Hematol 2009;46:52–63.

2. Schrappe M., Camitta B., Pui C.-H. Long-term results of large prospective trials in childhood acute lymphoblastic leukemia. Leukemia 2000;14:2193–4.

3. Pui C.H. Toward a total cure for acute lymphoblastic leukemia. J Clin Oncol 2009;27:5121–3.

4. Румянцева Ю.В., Карачунский А.И., Румянцев А.Г. Оптимизация терапии острого лимфобластного лейкоза у детей в России. Педиатрия 2009;4:19–27.

5. Mörike A., Zimmermann M., Reiter A. et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia 2010;24:265–84.

6. Pui C.H., Pei D., Sandlund D.T. et al. Long-term results of St. Jude Total therapy studies 11, 12, 13A, 13B and 14 for childhood acute lymphoblastic leukemia. Leukemia 2010;24:371–82.

7. Bhojwani D., Howard S.C., Pui C.-H. High-risk childhood acute lymphoblastic leukemia. Clin Lymphoma Myeloma 2009;9(Suppl. 3):222–30.

8. Шориков Е.В. Результаты программного лечения острого лимфобластного лейкоза у детей первого года жизни. Автореф. дис. …канд. мед. наук. М., 2005. 39 с.

9. Hilden J.M., Dinndorf P.A., Meerbaum S.O. t al. Analysis of prognostic factors of acute lymphoblastic leukemia in infants: report on CCG 1953 from the Children’s Oncology Group. Blood 2006;108(2):441–51.

10. Biondi A., Rizzari C., Valsecchi M.G. et al. Role of treatment intensification in infants with acute lymphoblastic leukemia: results of two consecutive AIEOP studies. Haematologica 2006;91:534–7.

11. Pieters R., Schrappe M., De Lorenzo P. et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukemia (Interfant-99): an observational study and a multicentre randomized trial. Lancet 2007;370:240–50.

12. Tomizawa D., Koh K., Sato T. et al. Outcome of risk-based therapy for infant acute lymphoblastic leukemia with or without an MLL gene rearrangement, with emphasis on late effects: a final report of two consecutive studies, MLL96 and MLL98, of the Japan Infant Leukemia Study Group. Leukemia 2007;21:2258–63.

13. Armstrong S.A., Staunton J.E., Silverman L.B. et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genetics 2002;30:41–7.

14. Zangrando A., Dell’Orto M.C., te Kronnie G., Basso G. MLL rearrangements in pediatric acute lymphoblastic and myeloblastic leukemias: MLL specific and lineage-specific signatures. BMC Med Genom 2009;23:2–36.

15. Stam R.W., Schneider P., Hagelstein J.A.P. et al. Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants. Blood 2010;115:2835–44.

16. Qazi S., Uckun F.M. Gene expression profiles of infant acute lymphoblastic leukemia and its prognostically distinct subsets. Br J Hematol 2010;149:865–73.

17. Chen C-S., Sorensen P., Domer P. et al. Molecular rearrangements on chromosome 11q23 redominate in infant acute lymphoblastic leukemia and are associated with specific biologic variables and poor outcome. Blood 1993;81:2386–93.

18. Szczepanski T., Harrison C.J., van Dongen J.J.M. Genetic aberrations in paediatric acute leukaemias and implication for management of patients. Lancet Oncol 2010;11:880–9.

19. Цаур Г.А., Попов А.М., Алейникова О.В. и др. Характеристика перестроек 11q23 (MLL) у детей первого года жизни с острым лимфобластным лейкозом. Онкогематол 2011;3:57–64.

20. Pui C.H., Behm F.G., Downing J.R. et al. 11q23/MLL rearrangement confers a poor prognosis in infants with acute lymphoblastic leukemia. J Clin Oncol 1994;12:909–15.

21. Rubnitz J.E., Link M.P., Shuster J.J. et al. Frequency and prognostic significance of HRX rearrangements in infant acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 1994;84:570–3.

22. Cimino G., Rapanotti M.C., Rivolta A. et al. Prognostic relevance of ALL-1 gene rearrangement in infant acute leukemias. Leukemia 1995;9:391–5.

23. Pui C.H., Ribeiro R.C., Campana D. et al. Prognostic factors in the acute lymphoid and myeloid leukemias of infants. Leukemia 1996;10:952–6.

24. Taki T., Ida K., Bessho F. et al. Frequency and clinical significance of the MLL gene rearrangements in infant acute leukemia. Leukemia 1996;10:1303–7.

25. Dordelmann M., Reiter A., Borkhardt A. et al. Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood 1999;94: 1209–17.

26. Heerema N.A., Sather H.N., Ge J. et al. Cytogenetic studies of infant acute lymphoblastic leukemia: poor prognosis of infants with t(4;11) – a report of the Children's Cancer Group. Leukemia 1999;13:679–86.

27. Reaman G.H., Sposto R., Sensel M.G. et al. Treatment outcome and prognostic factors for infants with acute lymphoblastic eukemia treated on two consecutive trials of the Children's Cancer Group. J Clin Oncol 1999;17:445–55.

28. Isoyama K., Eguchi M., Hibi S. et al. Risk-directed treatment of infant acute lymphoblastic leukaemia based on early assessment of MLL gene status: results of the Japan Infant Leukaemia Study (MLL96). Br J Haematol 2002;118:999–1010.

29. Fechina L., Shorikov E., Tsaur G. et al. Contribution of all-trans retinoic acid to improved early relapse-free outcome in infant acute lymphoblastic leukemia comparing to the chemotherapy alone. Blood 2007;110(11):832А; abstr. 2828.

30. Chessells J.M., Eden O.B., Bailey C.C. et al. Acute lymphoblastic leukaemia in infancy: experience in MRC UKALL trials. Report from the Medical Research Council Working Party on Childhood Leukaemia. Leukemia 1994;8:1275–9.

31. Frankel L.S., Ochs J., Shuster J.J. et al. Therapeutic trial for infant acute lymphoblastic leukemia: the Pediatric Oncology Group experience (POG 8493). J Pediatr Hematol/Oncol 1997;19:35–42.

32. Silverman L.B., McLean T.W., Gelber R.D. et al. Intensified therapy for infants with acute lymphoblastic leukemia: results from the Dana-Farber Cancer Institute Consortium. Cancer 1997;80:2285–95.

33. Kosaka Y., Koh K., Kinukawa N. et al. Infant acute lymphoblastic leukemia with MLL gene rearrangements: outcome following intensive chemotherapy and hematopoietic stem cell transplantation. Blood 2004;104:3527–34.

34. Basso G., Putti M.C., Cantú-Rajnoldi A. et al. The immunophenotype in infant acute lymphoblastic leukaemia: correlation with clinical outcome. An Italian multicentre study (AIEOP). Br J Haematol 1992;81:184–91.

35. Ferster A., Bertrand Y., Benoit Y. et al. Improved survival for acute lymphoblastic leukaemia in infancy: the experience of EORTC-Childhood Leukaemia Cooperative Group. Br J Haematol 1994;86:284–90.

36. Szczepanski T., Sedek L., de Lorenzo P. et al. Prognostic value of immunophenotype in infant ALL – results of the INTERFANT’99 study. Blood 2010;110(11):832А; abstr. 2700.

37. Van der Velden V.H.J., Corral L., Valsecchi M.G. et al. Prognostic significance of minimal residual disease in infants with cute lymphoblastic leukemia treated within the Interfant-99 protocol. Leukemia 2009;23(6): 1073–9.

38. Цаур Г.А., Наседкина Т.В., Попов А.М. и др. Время достижения молекулярной ремиссии как фактор прогноза у детей первого года жизни острым лимфобластным лейкозом. Онкогематол 2010;2:46–54.

39. Borkhardt A., Vuchter C., Viehmann S. et al. Infant acute lymphoblastic leukemia – combined cytogenetic, immunophenotypical and molecular analysis of 77 cases. Leukemia 2002;16:1685–90.

40. Hrusak O., Porwit-MacDonald A. Antigen expression patterns reflecting genotype of acute leukemias. Leukemia 2002;16:1233–58.

41. De Zen L., Bicciato S., te Kronnie G., Basso G. Computational analysis of flow cytometry antigen expression profiles in childhood acute lymphoblastic leukemia: an MLL/AF4 identification. Leukemia 2003;17: 1557–65.

42. Schwartz S., Reider H., Schlager B. et al. Expression of the human homologue of rat NG2 in adult acute lymphoblastic leukemia: close association with MLL rearrangements and a CD10-/CD24-/CD65s+/CD15+ B-cell immunophenotype. Leukemia 2003;17:1589–95.

43. Attarbaschi A., Mann G., Konig M. et al. Mixed Lineage Leukemia – rearranged childhood pro-B and CD10-negative pre-B acute lymphoblastic leukemia constitutea distinct clinical entity. Clin Cancer Res 2006;15(10) :2988–94.

44. Behm F.G., Smith F.O, Raimondi S.C. et al. Human homologue of the rat chondroitin sulfate proteoglycan, NG2, etected by monoclonal antibody 7.1, identifies childhood acute lymphoblastic leukemias with t(4;11)(q21; q23) or t(11;19) (q23; p13) and MLL gene rearrangements. Blood 1996;87(3):1134–9.

45. Wuchter C., Harbott J., Schoch C. et al. Detection of acute leukemia cells with mixed lineage leukemia (MLL) gene rearrangements by flow cytometry using monoclonal antibody 7.1. Leukemia 2000;14:1232–8.

46. Zangrando A., Intini F., te Kronie G., Basso G. Validation of NG2 in identifying BPALL patients with MLL-rearrangements using qualitative and quantitative flow cytometry: a prospective study. Leukemia 2008;22:858–61.

47. Bene M., Castoldi G., Knapp W. et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterizationof Leukemias (EGIL). Leukemia 1995;9(10):1783–6.

48. ISCN: An International System Human Cytogenetic Nomenclature (2005). Eds: Shaffer L.G., Tommerup N. Karger, Basel, Switzerland, 2005.

49. Pallisgaard N., Hokland P., Riishoj D. et al. Multiplex reverse transcriptionpolymerase chain reaction for simultaneous screening of 29 translocations and chromosomal aberrations in acute leukemia.Blood 1998;92:574–88.

50. Van Dongen J., Macintyre E., Gabert J. et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Leukemia 1999;13: 1901–18.

51. Gabert J., Beillard E., van der Velden V. et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – A Europe Against Cancer Program. Leukemia

52. ;17(12):2318–57.

53. Meyer С., Schneider B., Reichel M. et al. Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. PNAS 2005;102(2):449–54.

54. Weinstein S., Obuchowski N.A., Lieber M.L. Clinical evaluation of diagnostic tests. Am J Roentgenol 2005;184:14–9.

55. Veltroni M., De Zen L., Sanzari M.C. et al. Expression of CD58 in normal, regenerating and leukemic bone marrow B cells: implications for the detection of minimal residual disease in acute lymphocytic leukemia. Haematologica 2003;88(11): 1245–52.

56. Meyer C., Kowartz E., Hoffmann J. et al. New insights to the MLL recombinome of acute leukemias. Leukemia 2009;23:1490–9.

57. Chessells J., Harrison C., Kempski H. et al. Clinical features, cytogenetics and outcome in acute lymphoblastic and myeloid leukaemia of infancy: report from the MRC Childhood Leukaemia working party. Leukemia 2002;16:776–84.


Review

For citations:


Popov A.M., Tsaur G.A., Verzhbitskaya T.Yu., Streneva O.V., Shorikov E.V., Saveliev L.I., Fechina L.G. Immunophenotypic investigation of infant acute lymphoblastic leukemia. Oncohematology. 2012;7(2):14-24. (In Russ.) https://doi.org/10.17650/1818-8346-2012-7-2-14-24

Views: 9940


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)