Preview

Онкогематология

Расширенный поиск

Противоопухолевая активность производных фуллерена и возможности их использования для адресной доставки лекарств

https://doi.org/10.17650/1818-8346-2013-8-2-83-92

Об авторах

М. А. Орлова
ФГБОУ ВПО «Московский государственный университет им. М.В. Ломоносова»
Россия
Химический факультет, кафедра радиохимии


Т. П. Трофимова
ФГБОУ ВПО «Московский государственный университет им. М.В. Ломоносова»
Россия
Химический факультет, кафедра радиохимии


А. П. Орлов
ГБОУ ВПО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия
медико-биологический факультет, кафедра медицинских нанобиотехнологий


О. А. Шаталов
ГБОУ ВПО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России
Россия
фармацевтический факультет, кафедра фармакологии


Ю. К. Наполов
ГБОУ ВПО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России
Россия
фармацевтический факультет, кафедра фармакологии


А. А. Свистунов
ГБОУ ВПО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России
Россия
фармацевтический факультет, кафедра фармакологии


В. П. Чехонин
ГБОУ ВПО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия
медико-биологический факультет, кафедра медицинских нанобиотехнологий


Список литературы

1. Jalbout A.F., Hameed A.J., Trzaskowski B. Study of the structural and electronic properties of 1-(4, 5 and 6-selenenyl derivatives-3-formyl-phenyl) pyrrolidinofullerenes. J Organometal Chem 2007;692:1039–47.

2. Jiao F., Liu Y., Qu Y. et al. Studies on antitumor and antimetastatic activities of fullerenol in a mouse breast cancer model. Carbon 2010;48:2231–43.

3. Nishizawa C., Hashimoto N., Yokoo S. et al. Pyrrolidinium-type fullerene derivativeinduced apoptosis by the generation of reactive oxygen species in HL-60 cells. Free Radic Res 2009;43:1240–7.

4. Wang J., Chen C., Li B. et al. Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumorbearing mice. Biochem Pharmacol 2006;71:872–81.

5. Liu Y., Jiao F., Qiu Y. et al. Immunostimulatory properties and enhanced TNF-a mediated cellular

6. immunity for tumor therapy by C60(OH)20 nanoparticles. Nanotechnology 2009;20:415102–11.

7. Liu Y., Jiao F., Qiu Y. et al. The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-α mediated cellular immunity. Biomaterials 2009;30:3934–45.

8. Meng H., Xing G., Sun B. et al. Potent angiogenesis inhibition by the particulate form of fullerene derivatives. Acs Nano 2010;4:2773–83.

9. Prylutska S., Burlaka A.P., Klymenko P.P. et al. Using water-soluble C60 fullerenes in anticancer therapy. Cancer Nanotechnol 2011;2:105–10.

10. Kharisov B.I., Kharissova O.V., Gomez M.J., Mendez U.O. Recent advances in the synthesis, characterization, and applications of fulleropyrrolidines. Ind Eng Chem Res 2009;48:545–71.

11. Mikawa M., Kato H., Okumura M. et al. Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Bioconjug Chem 2001;12:510–4.

12. Liu J.H., Cao L., Luo P.G. et al. Fullerene-conjugated doxorubicin in cells. Acs Appl Mater Interf 2010;2:1384–9.

13. Montellano A., Da Ros T., Bianco A., Prato M. Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale 2011;3:4035–44.

14. Rancan F., Helmreich M., Molich A. et al. Fullerene-pyropheophorbide a complexes as sensitizer for photodynamic therapy: uptake and photo-induced cytotoxicity on Jurkat cells. J Photochem Photobiol B 2005;80:1–7.

15. Boyd P.D., Hodgson M.C., Rickard C.E.F. et al. Selective supramolecular porphyrin/fullerene interactions. J Am Chem Soc 1999;121:10487–95.

16. Nishiyama N., Stapert H.R., Zhang G.D. et al. Light-harvesting ionic dendrimer porphyrins as new photosensitizers for photodynamic therapy. Bioconjugate Chem 2003;14:58–66.

17. Rezayat S.M., Boushehri S.V.S., Salmanian B. et al. The porphyrin-fullerene nanoparticles to promote the ATP overproduction in myocardium: 25Mg2+-magnetic isotope effect. Eur J Med

18. Chem 2009;44:1554–69.

19. Buchachenko A.L., Kuznetsov D.A., Breslavskaya N.N., Orlova M.A. Magnesium isotope effect in enzymatic phosphorylation. J Phys Chem B 2008;112:2548–56.

20. Nikolić N., Vranjes-Ethurić S., Janković D. et al. Preparation and biodistribution of radiolabeled fullerene C60 nanocrystals. Nanotechnol 2009;20:385102.

21. Zhou Z., Lenk R.P., Dellinger A. et al. Liposomal formulation of amphiphilic fullerene antioxidants. Bioconj Chem 2010;21:1656–61.

22. Chaudhuri P., Paraskar A., Soni S. et al. Fullerenol-cytotoxic conjugates for cancer chemotherapy. ACS Nano 2009;3: 2505–14.

23. Song H., Luo S., Wei H. et al. In vivo biological behavior of 99mTc(CO)3 labelled fullerol. J Radioanal Nucl Chem 2010;285:635–9.

24. Roberts J.E., Wielgus A.R., Boyes W.K. et al. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells. Toxicol Appl Pharmacol 2008;228: 49–58.

25. Zhao B., Yin J.J., Bilski P. et al. Enhanced photodynamic efficacy towards melanoma cells by encapsulation of Pc4 in silica nanoparticles. Toxicol Appl Pharmacol 2009;241:163–72.

26. Prow T.W., Bhutto I., Kim S.Y. et al. Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomedicine 2008;4:340–9.

27. Bejjani R.A., Benezra D., Cohen H. et al. Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Vis 2005;17:124–32.

28. Мешалкин Ю.П., Бгатова Н.Р. Перспективы и проблемы использования неорганических материалов в онкологии. Ж Сиб Фед Ун-та В 2008;3:248–68.

29. Mroz P., Tegos G.P., Gali H. et al. Photodynamic therapy with fullerenes. Photochem Photobiol Sci 2007;6:1139–49.

30. Burlaka A.P., Sidorik U.P., Pryl 2004;26:326–7.

31. Mroz P., Pawlak A., Satti M. Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism. Free Radical Biol Med 2007;43:711–9.

32. Yano S., Hirohara S., Obata M. et al. Current states and future views inphotodynamic therapy. J Photochem Photobiol C 2011;12:46–67.

33. Hu Z., Zhang C., Huang Y. et al. Photodynamic anticancer activities of water-soluble C60 derivatives nd their biological consequences in a HeLa cell line. Chem Biol Inter 2012;195:86–94.

34. Liu J., Ohta S., Sonoda A. Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy. J Controlled Release 2007;117:104–10.

35. Jiang G., Li G. Preparation, characterization, and properties of fullerene–vinylpyrrolidone copolymers. Biotechnol Prog 2012;28:215–22.

36. Vileno B., Jeney S., Sienkiewicz A. et al. Evidence of lipid peroxidation and protein phosphorylation in cells upon oxidative stress photo-generated by fullerols. Biophys Chem 2010;152:164–9.

37. Badireddy A.R., Hotze E.M., Chellam S. et al. Inactivation of bacteriophages via photosensitization of fullerol nanoparticles. Environ Sci Technol 2007;41:6627–32.

38. Taroni P., D’Andrea C., Valentini G. et al. Fullerol in human lens and retinal pigment epithelial cells: time domain fluorescence spectroscopy and imaging. Photochem Photobiol Sci 2011;10:904–10.

39. Straface E., Santini M.T., Donelli G. et al. Vitamin E prevents UVB-induced cell blebbing and cell death in A431 epidermoid cells. Int J Rad Biol 1995;68:579–87.

40. Ito S., Itoga K., Yamato M. et al. The co-application effects of fullerene and ascorbic acid on UV-B irradiated mouse skin. Toxicology 2010;267:27–38.

41. Fumelli C., Marconi A., Salvioli S. et al. Carboxyfullerenes protect human keratinocytes from ultraviolet-B-induced apoptosis. J Invest Dermatol 2000;115: 835–41.

42. Zhao B., He Y.Y., Chignell C.F. et al. Difference in phototoxicity of cyclodextrin complexed fullerene [(γ-CyD)2/C60] and its aggregated derivatives toward human lens epithelial cells. Chem Res Toxicol 2009;22:660–7.

43. Mikata Y., Takagi S., Tanahashi M. et al. Detection of 1270 nm emission from singlet oxygen and photocytotoxic property of sugar-pendant 60 fullerenes. Bioorg Med Chem Lett 2003;13:3289–92.

44. Otake E., Sakuma S., Torii K. et al. Effect and mechanism of a new photodynamic therapy with glycoconjugated fullerene. Photochem Photobiol 2010;86:1356–63.

45. Palyvoda K.O., Grynyuk I.I., Prylutsk S.V. et al. Apoptosis photoinduction by C60 fullerene in human leukemic T cells. Ukr Biochem J 2010;82:121–7.

46. Constantin C., Neagu M., Ion R. et al. Fullerene-porphyrin nanostructures in photodynamic therapy. Nanomedicine 2010;5:307–17.

47. Sharma S.K., Chiang L.Y., Hamblin M.R. Photodynamic therapy with fullerenes in vivo: reality or a dream? Nanomedicine 2011;6:1813–25.

48. Ni J., Wu Q.Y., Li Y.G. et al. Cytotoxic and radiosensitizing effects of nano-C60 on tumor cells in vitro. J Nanoparticle Res 2008;10:643–51.

49. Andrievsky G., Bruskov V.I., Tykhomyrov A.A., Gudkov S.V. Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostuctures in vitro and in vivo. Free Radic Biol Med 2009;47:786–93.

50. Huang S.Q., Gao Y., Li F. et al. Synthesis of fullerene derivative C(60)-Lys and its radioprotection effects in AHH-1 cell. J Rad Res Rad Proces 2010;1:37–41.

51. Theriot A.C., Casey R.C., Moore V.C. et al. Dendro[C60]fullerene DF-1 provides radioprotection to radiosensitive mammalian cells. Rad Envir Biophys 2010;49:437–45.

52. Chirico F., Fumelli C., Marconi A. et al. Carboxyfullerenes localize within mitochondria and prevent the UVB-induced intrinsic apoptotic pathway. Exp Dermatol 2007;16:429–36.

53. Dobrovolskaia M.A., McNeil S.E. Immunological properties of engineered nanomaterials. Nat Nanotechnol 2007;2:469–78.

54. Cai X., Hao J., Zhang X. et al. The polyhydroxylated fullerene derivative C60(OH)24 protects mice from ionizingradiation- induced immune and mitochondrial dysfunction. Toxicol Appl Pharmacol 2010;243:27–34.

55. Injac R., Perse M., Cerne M. et al. Protective effects of fullerenol C60(OH)24 against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer. Biomaterials 2009;30:1184–96.

56. Dordević A., Bogdanović G. Fullerenol – a new nanopharmaceutic? Arch Oncol 2008;16:42–5.

57. Takada H., Kokubo K., Matsubayashi K., O evaluated by β-carotene bleaching assay. Biosci Biotechnol Biochem 2006;70: 3088–93.

58. Vávrová J., Řezáčová M., Pejchal J. Fullerene nanoparticles and their antioxidative effects: a comparison to other radioprotective agents. J Appl Biomed 2012;10:1–8.

59. Fourches D., Pu D., Tassa C. et al. Quantitative nanostructure-activity relationship modeling. Acs Nano 2010;4:5703–12.

60. Kayat J., Gajbhiye V., Tekade R.K., Jain N.K. Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomed Nanotechnol Biol Med 2011;7:40–9.

61. Miller J., Lam M., Lebovitz R. Derivatized fullerenes: a new class of therapeutics and imaging agents. HeinOnline. Nanotech. L. & Bus., 2007.

62. Kepley C. Use of fullerenes for the treatment of mast cell and basophil-mediated disease. US Patent, № 7947262, 2006.

63. Kateb B., Chiu K., Black K.L. et al. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: What should be the policy?NeuroImage, 2011;54:106–24.

64. Bystrzejewska-Piotrowska G., Golimowski J., Urban P.L. Nanoparticles: Their potential toxicity, waste and environmental management. Waste Management 2009;29:2587–95.

65. Lewinski N., Colvin V., Drezek R. Cytotoxicity of nanoparticles. Small 2008;4:26–49.


Рецензия

Для цитирования:


Орлова М.А., Трофимова Т.П., Орлов А.П., Шаталов О.А., Наполов Ю.К., Свистунов А.А., Чехонин В.П. Противоопухолевая активность производных фуллерена и возможности их использования для адресной доставки лекарств. Онкогематология. 2013;8(2):83-92. https://doi.org/10.17650/1818-8346-2013-8-2-83-92

For citation:


Orlova M.A., Trofimova T.P., Orlov A.P., Shatalov O.A., Napolov Yu.K., Svistunov A.A., Chekhonin V.P. Antitumor activity of fullerene derivatives and their possible use for target drug delivery. Oncohematology. 2013;8(2):83-92. (In Russ.) https://doi.org/10.17650/1818-8346-2013-8-2-83-92

Просмотров: 8866


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)