Preview

Oncohematology

Advanced search

Hereditary predisposition syndromes to myeloid neoplasms: diseases, genes and mechanisms of development

https://doi.org/10.17650/1818-8346-2024-19-2-88-100

Abstract

With the development of modern next generation sequencing based DNA diagnostic methods, it has become possible to study hereditary predisposition to oncohematological diseases. Germline variants (mutations) of RUNX1, CEBPA, GATA2, ANKRD26, DDX41, FANC- (Fanconi anemia), etc. genes, associated with the development of hereditary hematological malignancies, have been identified. Timely diagnosis of such diseases will allow for medical genetic counseling and testing of the patient’s relatives to identify or exclude the risk of developing the disease, select a donor for the patient (it is undesirable to use a mutation carrier relative as a donor), and personalize the choice of chemotherapy regimens (for example, patients with Fanconi anemia may experience increased sensitivity to chemotherapy). The aim of this review is to present a modern view of the genetic predisposition to the development of hematological malignancies.

About the Authors

M. V. Makarova
EVOGEN; Russian Scientific Center of Roentgenoradiology, Ministry of Health of Russia
Russian Federation

Maria V. Makarova.

Build 1, 20 4th Roshchinskiy Proezd, Moscow 115191; 86 Profsoyuznaya St., 117997 Moscow



M. V. Nemtsova
EVOGEN; Research Centre for Medical Genetics; I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

Build 1, 20 4th Roshchinskiy Proezd, Moscow 115191; 1 Moskvorech’e St., Moscow 115522; Build. 2, 8 Trubetskaya St., Moscow 119991



D. A. Chekini
Clinical Hospital “Lapino” of the “Mother and Child” Group of companies
Russian Federation

111 1st Uspenskoe Shosse, Lapino, Moscow region 143081



D. K. Chernevskiy
EVOGEN; Privolzhsky Research Medical University, Ministry of Health of Russia
Russian Federation

Build 1, 20 4th Roshchinskiy Proezd, Moscow 115191; 10/1 Minina and Pozharskogo Ploshchad’, Nizhny Novgorod 603005



O. V. Sagaydak
EVOGEN; National Medical Research Centre of Cardiology named after Academician E.I. Chazov, Ministry of Health of Russia
Russian Federation

Build 1, 20 4th Roshchinskiy Proezd, Moscow 115191; 15A Academician Chazova St., Moscow 121359



E. V. Kosova
EVOGEN
Russian Federation

Build 1, 20 4th Roshchinskiy Proezd, Moscow 115191



A. A. Krinitsyna
EVOGEN
Russian Federation

Build 1, 20 4th Roshchinskiy Proezd, Moscow 115191



M. S. Belenikin
EVOGEN
Russian Federation

Build 1, 20 4th Roshchinskiy Proezd, Moscow 115191



P. A. Zeynalova
Clinical Hospital “Lapino” of the “Mother and Child” Group of companies
Russian Federation

111 1st Uspenskoe Shosse, Lapino, Moscow region 143081



References

1. Lynch H.T., Snyder C.L. Introduction to special issue of Familial Cancer. Fam Cancer 2016;15(3):357–8. DOI: 10.1007/s10689-016-9909-1

2. Guidugli L., Johnson A.K., Alkorta-Aranburu G. et al. Clinical utility of gene panel-based testing for hereditary myelodysplastic syndrome/acute leukemia predisposition syndromes. Leukemia 2017;31(5):1226–9. DOI: 10.1038/leu.2017.28

3. Godley L.A., Shimamura A. Genetic predisposition to hematologic malignancies: management and surveillance. Blood 2017;130(4):424–32. DOI: 10.1182/blood-2017-02-735290

4. Galera P., Hsu A.P., Wang W. et al. Donor-derived MDS/AML in families with germline GATA2 mutation. Blood 2018;132(18):1994–8. DOI: 10.1182/blood-2018-07-861070

5. Arber D.A., Orazi A., Hasserjian R. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127(20):2391–405. DOI: 10.1182/blood-2016-03-643544

6. University of Chicago Hematopoietic Malignancies Cancer Risk Team. How I diagnose and manage individuals at risk for inherited myeloid malignancies. Blood 2016;128(14):1800–13. DOI: 10.1182/blood-2016-05-670240

7. Churpek J.E. Familial myelodysplastic syndrome/acute myeloid leukemia. Best Pract Res Clin Haematol 2017;30(4):287–9. DOI: 10.1016/j.beha.2017.10.002

8. Schratz K.E., DeZern A.E. Genetic predisposition to myelodysplastic syndrome in clinical practice. Hematol Oncol Clin North Am 2020;34(2):333–56. DOI: 10.1016/j.hoc.2019.10.002

9. Mangaonkar A.A., Patnaik M.M. Hereditary predisposition to hematopoietic neoplasms: when bloodline matters for blood cancers. Mayo Clin Proc 2020;95(7):1482–98. DOI: 10.1016/j.mayocp.2019.12.013

10. Su L., Tan Y., Lin H. et al. Mutational spectrum of acute myeloid leukemia patients with double CEBPA mutations based on next-generation sequencing and its prognostic significance. Oncotarget 2018;9(38):24970–9. DOI: 10.18632/oncotarget.23873

11. Su L., Shi Y.Y., Liu Z.Y., Gao S.J. Acute myeloid leukemia with CEBPA mutations: current progress and future directions. Front Oncol 2022;12:806137. DOI: 10.3389/fonc.2022.806137

12. Taube F., Georgi J.A., Kramer M. et al. CEBPA mutations in 4708 patients with acute myeloid leukemia: differential impact of bZIP and TAD mutations on outcome. Blood 2022;139(1): 87–103. DOI: 10.1182/blood.2020009680

13. Gunz F.W., Gunz J.P., Vincent P.C. et al. Thirteen cases of leukemia in a family. J Natl Cancer Inst 1978;60(6):1243–50. DOI: 10.1093/jnci/60.6.1243

14. Carmichael C.L., Wilkins E.J., Bengtsson H. et al. Poor prognosis in familial acute myeloid leukaemia with combined biallelic CEBPA mutations and downstream events affecting the ATM, FLT3 and CDX2 genes. Br J Haematol 2010;150(3):382–5. DOI: 10.1111/j.1365-2141.2010.08204.x

15. Tawana K., Rio-Machin A., Preudhomme C., Fitzgibbon J. Familial CEBPA-mutated acute myeloid leukemia. Semin Hematol 2017;54(2):87–93. DOI: 10.1053/j.seminhematol.2017.04.001

16. Tawana K., Wang J., Renneville A. et al. Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood 2015;126(10):1214–23. DOI: 10.1182/blood-2015-05-647172

17. Cheah J.J.C., Hahn C.N., Hiwase D.K. et al. Myeloid neoplasms with germline DDX41 mutation. Int J Hematol 2017;106(2):163–74. DOI: 10.1007/s12185-017-2260-y

18. Jiang Y., Zhu Y., Qiu W. et al. Structural and functional analyses of human DDX41 DEAD domain [published correction appears in Protein Cell 2017;8(2):155–7]. Protein Cell 2017;8(1):72–6. DOI: 10.1007/s13238-016-0351-9

19. Choi E.J., Cho Y.U., Hur E.H. et al. Unique ethnic features of DDX41 mutations in patients with idiopathic cytopenia of undetermined significance, myelodysplastic syndrome, or acute myeloid leukemia. Haematologica 2022;107(2):510–8. DOI: 10.3324/haematol.2020.270553

20. Sébert M., Passet M., Raimbault A. et al. Germline DDX41 mutations define a significant entity within adult MDS/AML patients. Blood 2019;134(17):1441–4. DOI: 10.1182/blood.2019000909

21. Quesada A.E., Routbort M.J., DiNardo C.D. et al. DDX41 mutations in myeloid neoplasms are associated with male gender, TP53 mutations and high-risk disease. Am J Hematol 2019;94(7):757–66. DOI: 10.1002/ajh.25486

22. Polprasert C., Schulze I., Sekeres M.A. et al. Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell 2015;27(5):658–70. DOI: 10.1016/j.ccell.2015.03.017

23. Lewinsohn M., Brown A.L., Weinel L.M. et al. Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood 2016;127(8):1017–23. DOI: 10.1182/blood-2015-10-676098

24. Kellaway S.G., Coleman D.J.L., Cockerill P.N. et al. Molecular basis of hematological disease caused by inherited or acquired RUNX1 mutations. Exp Hematol 2022;111:1–12. DOI: 10.1016/j.exphem.2022.03.009

25. OMIM – Online Mendelian Inheritance in Man. RUNX1. Available at: https://www.omim.org/entry/151385 (accessed 12.11.2023).

26. Morgan N.V., Daly M.E. Gene of the issue: RUNX1 mutations and inherited bleeding. Platelets 2017;28(2):208–10. DOI: 10.1080/09537104.2017.1280151

27. Förster A., Decker M., Schlegelberger B., Ripperger T. Beyond pathogenic RUNX1 germline variants: the spectrum of somatic alterations in RUNX1-familial platelet disorder with predisposition to hematologic malignancies. Cancers (Basel) 2022;14(14):3431. DOI: 10.3390/cancers14143431

28. Illango J., Sreekantan Nair A., Gor R. et al. A systematic review of the role of Runt-Related Transcription Factor 1 (RUNX1) in the pathogenesis of hematological malignancies in patients with inherited bone marrow failure syndromes. Cureus 2022;14(5):e25372. DOI: 10.7759/cureus.25372

29. Hou H.A., Kuo Y.Y., Liu C.Y. et al. Distinct association between aberrant methylation of Wnt inhibitors and genetic alterations in acute myeloid leukaemia. Br J Cancer 2011;105(12):1927–33. DOI: 10.1038/bjc.2011.471

30. Geyer J.T. Myeloid neoplasms with germline predisposition. Pathobiology 2019;86(1):53–61. DOI: 10.1159/000490311

31. Balduini A., Raslova H., Di Buduo C.A. et al. Clinic, pathogenic mechanisms and drug testing of two inherited thrombocytopenias, ANKRD26-related Thrombocytopenia and MYH9-related diseases. Eur J Med Genet 2018;61(11):715–22. DOI: 10.1016/j.ejmg.2018.01.014

32. Noris P., Favier R., Alessi M.C. et al. ANKRD26-related thrombocytopenia and myeloid malignancies. Blood 2013;122(11):1987–9. DOI: 10.1182/blood-2013-04-499319

33. Sullivan M.J., Palmer E.L., Botero J.P. ANKRD26-related thrombocytopenia and predisposition to myeloid neoplasms. Curr Hematol Malig Rep 2022;17(5):105–12. DOI: 10.1007/s11899-022-00666-4

34. Park M. Myelodysplastic syndrome with genetic predisposition. Blood Res 2021;56(S1):S34–8. DOI: 10.5045/br.2021.2020327

35. Bluteau D., Balduini A., Balayn N. et al. Thrombocytopenia-associated mutations in the ANKRD26 regulatory region induce MAPK hyperactivation. J Clin Invest 2014;124(2):580–91. DOI: 10.1172/JCI71861

36. Ding L.W., Ikezoe T., Tan K.T. et al. Mutational profiling of a MonoMAC syndrome family with GATA2 deficiency. Leukemia 2017;31(1):244–5. DOI: 10.1038/leu.2016.256

37. McReynolds L.J., Yang Y., Yuen Wong H. et al. MDS-associated mutations in germline GATA2 mutated patients with hematologic manifestations. Leuk Res 2019;76:70–5. DOI: 10.1016/j.leukres.2018.11.013

38. Bruzzese A., Leardini D., Masetti R. et al. GATA2 related conditions and predisposition to pediatric myelodysplastic syndromes. Cancers (Basel) 2020;12(10):2962. DOI: 10.3390/cancers12102962

39. Wlodarski M.W., Collin M., Horwitz M.S. GATA2 deficiency and related myeloid neoplasms. Semin Hematol 2017;54(2):81–6. DOI: 10.1053/j.seminhematol.2017.05.002

40. Donadieu J., Lamant M., Fieschi C. et al. Natural history of GATA2 deficiency in a survey of 79 French and Belgian patients. Haematologica 2018;103(8):1278–87. DOI: 10.3324/haematol.2017.181909

41. Koyunlar C., de Pater E. From basic biology to patient mutational spectra of GATA2 haploinsufficiencies: what are the mechanisms, hurdles, and prospects of genome editing for treatment. Front Genome Ed 2020;2:602182. DOI: 10.3389/fgeed.2020.602182

42. Wang X., Muramatsu H., Okuno Y. et al. GATA2 and secondary mutations in familial myelodysplastic syndromes and pediatric myeloid malignancies. Haematologica 2015;100(10):e398–401. DOI: 10.3324/haematol.2015.127092

43. OMIM – Online Mendelian Inheritance in Man. Fanconi anemia. Available at: https://www.omim.org/entry/227650 (accessed 12.11.2023).

44. Bagby G.C. Multifunctional Fanconi proteins, inflammation and the Fanconi phenotype. EBioMedicine 2016;8:10–1. DOI: 10.1016/j.ebiom.2016.06.005

45. Moreno O.M., Paredes A.C., Suarez-Obando F., Rojas A. An update on Fanconi anemia: clinical, cytogenetic and molecular approaches (review). Biomed Rep 2021;15(3):74. DOI: 10.3892/br.2021.1450

46. Wang A.T., Kim T., Wagner J.E. et al. A Dominant mutation in human RAD51 reveals its function in DNA interstrand crosslink repair independent of homologous recombination. Mol Cell 2015;59(3):478–90. DOI: 10.1016/j.molcel.2015.07.009

47. Nalepa G., Clapp D.W. Fanconi anaemia and cancer: an intricate relationship. Nat Rev Cancer 2018;18(3):168–85. DOI: 10.1038/nrc.2017.116

48. Fang C.B., Wu H.T., Zhang M.L. et al. Fanconi anemia pathway: mechanisms of breast cancer predisposition development and potential therapeutic targets. Front Cell Dev Biol 2020;8:160. DOI: 10.3389/fcell.2020.00160

49. Del Valle J., Rofes P., Moreno-Cabrera J.M. et al. Exploring the role of mutations in Fanconi anemia genes in hereditary cancer patients. Cancers (Basel) 2020;12(4):829. DOI: 10.3390/cancers12040829

50. Panferova A.V., Timofeeva N.M., Olshanskaya Yu.V. Genetic diagnosis of Fanconi anemia. Literature review. Onkogematologiya = Oncohematology 2016;11(3):76–85. (In Russ.). DOI: 10.17650/1818-8346-2016-11-3-76-85

51. Alter B.P. Fanconi anemia and the development of leukemia. Best Pract Res Clin Haematol 2014;27(3–4):214–21. DOI: 10.1016/j.beha.2014.10.002

52. Chang L., Cui Z., Shi D. et al. Polyclonal evolution of Fanconi anemia to MDS and AML revealed at single cell resolution. Exp Hematol Oncol 2022;11(1):64. DOI: 10.1186/s40164-022-00319-5

53. Daniali L., Benetos A., Susser E. et al. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun 2013;4:1597. DOI: 10.1038/ncomms2602

54. Jones C.H., Pepper C., Baird D.M. Telomere dysfunction and its role in haematological cancer. Br J Haematol 2012;156(5):573–87. DOI: 10.1111/j.1365-2141.2011.09022.x

55. Holohan B., Wright W.E., Shay J.W. Cell biology of disease: telomeropathies: an emerging spectrum disorder. J Cell Biol 2014;205(3):289–99. DOI: 10.1083/jcb.201401012

56. Opresko P.L., Shay J.W. Telomere-associated aging disorders. Ageing Res Rev 2017;33:52–66. DOI: 10.1016/j.arr.2016.05.009

57. Alter B.P., Giri N., Savage S.A., Rosenberg P.S. Cancer in the National Cancer Institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up. Haematologica 2018;103(1):30–9. DOI: 10.3324/haematol.2017.178111

58. Armanios M., Blackburn E.H. The telomere syndromes [published correction appears in Nat Rev Genet 2013;14(3):235]. Nat Rev Genet 2012;13(10):693–704. DOI: 10.1038/nrg3246

59. Mangaonkar A.A., Patnaik M.M. Short telomere syndromes in clinical practice: bridging bench and bedside. Mayo Clin Proc 2018;93(7):904–16. DOI: 10.1016/j.mayocp.2018.03.020

60. Robertson J.D., Testa N.G., Russell N.H. et al. Accelerated telomere shortening following allogeneic transplantation is independent of the cell source and occurs within the first year post transplant. Bone Marrow Transplant 2001;27(12):1283–6. DOI: 10.1038/sj.bmt.1703069

61. Olivier M., Eeles R., Hollstein M. et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 2002;19:607–14. DOI: 10.1002/humu.10081

62. George B., Kantarjian H., Baran N. et al. TP53 in acute myeloid leukemia: molecular aspects and patterns of mutation. Int J Mol Sci 2021;22(19):10782. DOI: 10.3390/ijms221910782

63. Boregowda S.V., Krishnappa V., Strivelli J. et al. Basal p53 expression is indispensable for mesenchymal stem cell integrity. Cell Death Differ 2018;25:679–92. DOI: 10.1038/s41418-017-0004-4

64. Zhao Z., Zuber J., Diaz-Flores E. et al. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev 2010;24(13):1389–402. DOI: 10.1101/gad.1940710

65. Amadou A., Achatz M.I.W., Hainaut P. Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: temporal phases of Li–Fraumeni syndrome. Curr Opin Oncol 2018;30:23–9. DOI: 10.1097/CCO.0000000000000423

66. Valdez J.M., Nichols K.E., Kesserwan C. Li–Fraumeni syndrome: a paradigm for the understanding of hereditary cancer predisposition. Br J Haematol 2017;176(4):539–52. DOI: 10.1111/bjh.14461

67. Hunter A.M., Sallman D.A. Targeting TP53 mutations in myelodysplastic syndromes. Hematol Oncol Clin North Am 2020;34(2):421–40. DOI: 10.1016/j.hoc.2019.11.004

68. Swaminathan M., Bannon S.A., Routbort M. et al. Hematologic malignancies and Li–Fraumeni syndrome. Cold Spring Harb Mol Case Stud 2019;5(1):a003210. DOI: 10.1101/mcs.a003210

69. Tessoulin B., Descamps G., Moreau P. et al. PRIMA-1Met induces myeloma cell death independent of p53 by impairing the GSH/ROS balance. Blood 2014;124(10):1626–36. DOI: 10.1182/blood-2014-01-548800

70. Churpek J.E., Smith-Simmer K. DDX41-Associated familial myelodysplastic syndrome and acute myeloid leukemia. In: GeneReviews®. Eds.: M.P. Adam, D.B. Everman, G.M. Mirzaa et al. Seattle (WA): University of Washington, Seattle, 2021.

71. Papaemmanuil E., Gerstung M., Bullinger L. et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016;374(23):2209–21. DOI: 10.1056/NEJMoa1516192

72. Döhner H., Estey E., Grimwade D. et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017;129(4):424–47. DOI: 10.1182/blood-2016-08-733196

73. Lyu X., Li T., Zhu D. et al. Whole-genome sequencing as an alternative to analyze copy number abnormalities in acute myeloid leukemia and myelodysplastic syndrome. Leuk Lymphoma 2022;63(10):2301–10. DOI: 10.1080/10428194.2022.2080821


Review

For citations:


Makarova M.V., Nemtsova M.V., Chekini D.A., Chernevskiy D.K., Sagaydak O.V., Kosova E.V., Krinitsyna A.A., Belenikin M.S., Zeynalova P.A. Hereditary predisposition syndromes to myeloid neoplasms: diseases, genes and mechanisms of development. Oncohematology. 2024;19(2):88-100. (In Russ.) https://doi.org/10.17650/1818-8346-2024-19-2-88-100

Views: 1597


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)