Hereditary predisposition syndromes to myeloid neoplasms: diseases, genes and mechanisms of development
https://doi.org/10.17650/1818-8346-2024-19-2-88-100
Abstract
With the development of modern next generation sequencing based DNA diagnostic methods, it has become possible to study hereditary predisposition to oncohematological diseases. Germline variants (mutations) of RUNX1, CEBPA, GATA2, ANKRD26, DDX41, FANC- (Fanconi anemia), etc. genes, associated with the development of hereditary hematological malignancies, have been identified. Timely diagnosis of such diseases will allow for medical genetic counseling and testing of the patient’s relatives to identify or exclude the risk of developing the disease, select a donor for the patient (it is undesirable to use a mutation carrier relative as a donor), and personalize the choice of chemotherapy regimens (for example, patients with Fanconi anemia may experience increased sensitivity to chemotherapy). The aim of this review is to present a modern view of the genetic predisposition to the development of hematological malignancies.
About the Authors
M. V. MakarovaRussian Federation
Maria V. Makarova.
Build 1, 20 4th Roshchinskiy Proezd, Moscow 115191; 86 Profsoyuznaya St., 117997 Moscow
M. V. Nemtsova
Russian Federation
Build 1, 20 4th Roshchinskiy Proezd, Moscow 115191; 1 Moskvorech’e St., Moscow 115522; Build. 2, 8 Trubetskaya St., Moscow 119991
D. A. Chekini
Russian Federation
111 1st Uspenskoe Shosse, Lapino, Moscow region 143081
D. K. Chernevskiy
Russian Federation
Build 1, 20 4th Roshchinskiy Proezd, Moscow 115191; 10/1 Minina and Pozharskogo Ploshchad’, Nizhny Novgorod 603005
O. V. Sagaydak
Russian Federation
Build 1, 20 4th Roshchinskiy Proezd, Moscow 115191; 15A Academician Chazova St., Moscow 121359
E. V. Kosova
Russian Federation
Build 1, 20 4th Roshchinskiy Proezd, Moscow 115191
A. A. Krinitsyna
Russian Federation
Build 1, 20 4th Roshchinskiy Proezd, Moscow 115191
M. S. Belenikin
Russian Federation
Build 1, 20 4th Roshchinskiy Proezd, Moscow 115191
P. A. Zeynalova
Russian Federation
111 1st Uspenskoe Shosse, Lapino, Moscow region 143081
References
1. Lynch H.T., Snyder C.L. Introduction to special issue of Familial Cancer. Fam Cancer 2016;15(3):357–8. DOI: 10.1007/s10689-016-9909-1
2. Guidugli L., Johnson A.K., Alkorta-Aranburu G. et al. Clinical utility of gene panel-based testing for hereditary myelodysplastic syndrome/acute leukemia predisposition syndromes. Leukemia 2017;31(5):1226–9. DOI: 10.1038/leu.2017.28
3. Godley L.A., Shimamura A. Genetic predisposition to hematologic malignancies: management and surveillance. Blood 2017;130(4):424–32. DOI: 10.1182/blood-2017-02-735290
4. Galera P., Hsu A.P., Wang W. et al. Donor-derived MDS/AML in families with germline GATA2 mutation. Blood 2018;132(18):1994–8. DOI: 10.1182/blood-2018-07-861070
5. Arber D.A., Orazi A., Hasserjian R. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127(20):2391–405. DOI: 10.1182/blood-2016-03-643544
6. University of Chicago Hematopoietic Malignancies Cancer Risk Team. How I diagnose and manage individuals at risk for inherited myeloid malignancies. Blood 2016;128(14):1800–13. DOI: 10.1182/blood-2016-05-670240
7. Churpek J.E. Familial myelodysplastic syndrome/acute myeloid leukemia. Best Pract Res Clin Haematol 2017;30(4):287–9. DOI: 10.1016/j.beha.2017.10.002
8. Schratz K.E., DeZern A.E. Genetic predisposition to myelodysplastic syndrome in clinical practice. Hematol Oncol Clin North Am 2020;34(2):333–56. DOI: 10.1016/j.hoc.2019.10.002
9. Mangaonkar A.A., Patnaik M.M. Hereditary predisposition to hematopoietic neoplasms: when bloodline matters for blood cancers. Mayo Clin Proc 2020;95(7):1482–98. DOI: 10.1016/j.mayocp.2019.12.013
10. Su L., Tan Y., Lin H. et al. Mutational spectrum of acute myeloid leukemia patients with double CEBPA mutations based on next-generation sequencing and its prognostic significance. Oncotarget 2018;9(38):24970–9. DOI: 10.18632/oncotarget.23873
11. Su L., Shi Y.Y., Liu Z.Y., Gao S.J. Acute myeloid leukemia with CEBPA mutations: current progress and future directions. Front Oncol 2022;12:806137. DOI: 10.3389/fonc.2022.806137
12. Taube F., Georgi J.A., Kramer M. et al. CEBPA mutations in 4708 patients with acute myeloid leukemia: differential impact of bZIP and TAD mutations on outcome. Blood 2022;139(1): 87–103. DOI: 10.1182/blood.2020009680
13. Gunz F.W., Gunz J.P., Vincent P.C. et al. Thirteen cases of leukemia in a family. J Natl Cancer Inst 1978;60(6):1243–50. DOI: 10.1093/jnci/60.6.1243
14. Carmichael C.L., Wilkins E.J., Bengtsson H. et al. Poor prognosis in familial acute myeloid leukaemia with combined biallelic CEBPA mutations and downstream events affecting the ATM, FLT3 and CDX2 genes. Br J Haematol 2010;150(3):382–5. DOI: 10.1111/j.1365-2141.2010.08204.x
15. Tawana K., Rio-Machin A., Preudhomme C., Fitzgibbon J. Familial CEBPA-mutated acute myeloid leukemia. Semin Hematol 2017;54(2):87–93. DOI: 10.1053/j.seminhematol.2017.04.001
16. Tawana K., Wang J., Renneville A. et al. Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood 2015;126(10):1214–23. DOI: 10.1182/blood-2015-05-647172
17. Cheah J.J.C., Hahn C.N., Hiwase D.K. et al. Myeloid neoplasms with germline DDX41 mutation. Int J Hematol 2017;106(2):163–74. DOI: 10.1007/s12185-017-2260-y
18. Jiang Y., Zhu Y., Qiu W. et al. Structural and functional analyses of human DDX41 DEAD domain [published correction appears in Protein Cell 2017;8(2):155–7]. Protein Cell 2017;8(1):72–6. DOI: 10.1007/s13238-016-0351-9
19. Choi E.J., Cho Y.U., Hur E.H. et al. Unique ethnic features of DDX41 mutations in patients with idiopathic cytopenia of undetermined significance, myelodysplastic syndrome, or acute myeloid leukemia. Haematologica 2022;107(2):510–8. DOI: 10.3324/haematol.2020.270553
20. Sébert M., Passet M., Raimbault A. et al. Germline DDX41 mutations define a significant entity within adult MDS/AML patients. Blood 2019;134(17):1441–4. DOI: 10.1182/blood.2019000909
21. Quesada A.E., Routbort M.J., DiNardo C.D. et al. DDX41 mutations in myeloid neoplasms are associated with male gender, TP53 mutations and high-risk disease. Am J Hematol 2019;94(7):757–66. DOI: 10.1002/ajh.25486
22. Polprasert C., Schulze I., Sekeres M.A. et al. Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell 2015;27(5):658–70. DOI: 10.1016/j.ccell.2015.03.017
23. Lewinsohn M., Brown A.L., Weinel L.M. et al. Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood 2016;127(8):1017–23. DOI: 10.1182/blood-2015-10-676098
24. Kellaway S.G., Coleman D.J.L., Cockerill P.N. et al. Molecular basis of hematological disease caused by inherited or acquired RUNX1 mutations. Exp Hematol 2022;111:1–12. DOI: 10.1016/j.exphem.2022.03.009
25. OMIM – Online Mendelian Inheritance in Man. RUNX1. Available at: https://www.omim.org/entry/151385 (accessed 12.11.2023).
26. Morgan N.V., Daly M.E. Gene of the issue: RUNX1 mutations and inherited bleeding. Platelets 2017;28(2):208–10. DOI: 10.1080/09537104.2017.1280151
27. Förster A., Decker M., Schlegelberger B., Ripperger T. Beyond pathogenic RUNX1 germline variants: the spectrum of somatic alterations in RUNX1-familial platelet disorder with predisposition to hematologic malignancies. Cancers (Basel) 2022;14(14):3431. DOI: 10.3390/cancers14143431
28. Illango J., Sreekantan Nair A., Gor R. et al. A systematic review of the role of Runt-Related Transcription Factor 1 (RUNX1) in the pathogenesis of hematological malignancies in patients with inherited bone marrow failure syndromes. Cureus 2022;14(5):e25372. DOI: 10.7759/cureus.25372
29. Hou H.A., Kuo Y.Y., Liu C.Y. et al. Distinct association between aberrant methylation of Wnt inhibitors and genetic alterations in acute myeloid leukaemia. Br J Cancer 2011;105(12):1927–33. DOI: 10.1038/bjc.2011.471
30. Geyer J.T. Myeloid neoplasms with germline predisposition. Pathobiology 2019;86(1):53–61. DOI: 10.1159/000490311
31. Balduini A., Raslova H., Di Buduo C.A. et al. Clinic, pathogenic mechanisms and drug testing of two inherited thrombocytopenias, ANKRD26-related Thrombocytopenia and MYH9-related diseases. Eur J Med Genet 2018;61(11):715–22. DOI: 10.1016/j.ejmg.2018.01.014
32. Noris P., Favier R., Alessi M.C. et al. ANKRD26-related thrombocytopenia and myeloid malignancies. Blood 2013;122(11):1987–9. DOI: 10.1182/blood-2013-04-499319
33. Sullivan M.J., Palmer E.L., Botero J.P. ANKRD26-related thrombocytopenia and predisposition to myeloid neoplasms. Curr Hematol Malig Rep 2022;17(5):105–12. DOI: 10.1007/s11899-022-00666-4
34. Park M. Myelodysplastic syndrome with genetic predisposition. Blood Res 2021;56(S1):S34–8. DOI: 10.5045/br.2021.2020327
35. Bluteau D., Balduini A., Balayn N. et al. Thrombocytopenia-associated mutations in the ANKRD26 regulatory region induce MAPK hyperactivation. J Clin Invest 2014;124(2):580–91. DOI: 10.1172/JCI71861
36. Ding L.W., Ikezoe T., Tan K.T. et al. Mutational profiling of a MonoMAC syndrome family with GATA2 deficiency. Leukemia 2017;31(1):244–5. DOI: 10.1038/leu.2016.256
37. McReynolds L.J., Yang Y., Yuen Wong H. et al. MDS-associated mutations in germline GATA2 mutated patients with hematologic manifestations. Leuk Res 2019;76:70–5. DOI: 10.1016/j.leukres.2018.11.013
38. Bruzzese A., Leardini D., Masetti R. et al. GATA2 related conditions and predisposition to pediatric myelodysplastic syndromes. Cancers (Basel) 2020;12(10):2962. DOI: 10.3390/cancers12102962
39. Wlodarski M.W., Collin M., Horwitz M.S. GATA2 deficiency and related myeloid neoplasms. Semin Hematol 2017;54(2):81–6. DOI: 10.1053/j.seminhematol.2017.05.002
40. Donadieu J., Lamant M., Fieschi C. et al. Natural history of GATA2 deficiency in a survey of 79 French and Belgian patients. Haematologica 2018;103(8):1278–87. DOI: 10.3324/haematol.2017.181909
41. Koyunlar C., de Pater E. From basic biology to patient mutational spectra of GATA2 haploinsufficiencies: what are the mechanisms, hurdles, and prospects of genome editing for treatment. Front Genome Ed 2020;2:602182. DOI: 10.3389/fgeed.2020.602182
42. Wang X., Muramatsu H., Okuno Y. et al. GATA2 and secondary mutations in familial myelodysplastic syndromes and pediatric myeloid malignancies. Haematologica 2015;100(10):e398–401. DOI: 10.3324/haematol.2015.127092
43. OMIM – Online Mendelian Inheritance in Man. Fanconi anemia. Available at: https://www.omim.org/entry/227650 (accessed 12.11.2023).
44. Bagby G.C. Multifunctional Fanconi proteins, inflammation and the Fanconi phenotype. EBioMedicine 2016;8:10–1. DOI: 10.1016/j.ebiom.2016.06.005
45. Moreno O.M., Paredes A.C., Suarez-Obando F., Rojas A. An update on Fanconi anemia: clinical, cytogenetic and molecular approaches (review). Biomed Rep 2021;15(3):74. DOI: 10.3892/br.2021.1450
46. Wang A.T., Kim T., Wagner J.E. et al. A Dominant mutation in human RAD51 reveals its function in DNA interstrand crosslink repair independent of homologous recombination. Mol Cell 2015;59(3):478–90. DOI: 10.1016/j.molcel.2015.07.009
47. Nalepa G., Clapp D.W. Fanconi anaemia and cancer: an intricate relationship. Nat Rev Cancer 2018;18(3):168–85. DOI: 10.1038/nrc.2017.116
48. Fang C.B., Wu H.T., Zhang M.L. et al. Fanconi anemia pathway: mechanisms of breast cancer predisposition development and potential therapeutic targets. Front Cell Dev Biol 2020;8:160. DOI: 10.3389/fcell.2020.00160
49. Del Valle J., Rofes P., Moreno-Cabrera J.M. et al. Exploring the role of mutations in Fanconi anemia genes in hereditary cancer patients. Cancers (Basel) 2020;12(4):829. DOI: 10.3390/cancers12040829
50. Panferova A.V., Timofeeva N.M., Olshanskaya Yu.V. Genetic diagnosis of Fanconi anemia. Literature review. Onkogematologiya = Oncohematology 2016;11(3):76–85. (In Russ.). DOI: 10.17650/1818-8346-2016-11-3-76-85
51. Alter B.P. Fanconi anemia and the development of leukemia. Best Pract Res Clin Haematol 2014;27(3–4):214–21. DOI: 10.1016/j.beha.2014.10.002
52. Chang L., Cui Z., Shi D. et al. Polyclonal evolution of Fanconi anemia to MDS and AML revealed at single cell resolution. Exp Hematol Oncol 2022;11(1):64. DOI: 10.1186/s40164-022-00319-5
53. Daniali L., Benetos A., Susser E. et al. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun 2013;4:1597. DOI: 10.1038/ncomms2602
54. Jones C.H., Pepper C., Baird D.M. Telomere dysfunction and its role in haematological cancer. Br J Haematol 2012;156(5):573–87. DOI: 10.1111/j.1365-2141.2011.09022.x
55. Holohan B., Wright W.E., Shay J.W. Cell biology of disease: telomeropathies: an emerging spectrum disorder. J Cell Biol 2014;205(3):289–99. DOI: 10.1083/jcb.201401012
56. Opresko P.L., Shay J.W. Telomere-associated aging disorders. Ageing Res Rev 2017;33:52–66. DOI: 10.1016/j.arr.2016.05.009
57. Alter B.P., Giri N., Savage S.A., Rosenberg P.S. Cancer in the National Cancer Institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up. Haematologica 2018;103(1):30–9. DOI: 10.3324/haematol.2017.178111
58. Armanios M., Blackburn E.H. The telomere syndromes [published correction appears in Nat Rev Genet 2013;14(3):235]. Nat Rev Genet 2012;13(10):693–704. DOI: 10.1038/nrg3246
59. Mangaonkar A.A., Patnaik M.M. Short telomere syndromes in clinical practice: bridging bench and bedside. Mayo Clin Proc 2018;93(7):904–16. DOI: 10.1016/j.mayocp.2018.03.020
60. Robertson J.D., Testa N.G., Russell N.H. et al. Accelerated telomere shortening following allogeneic transplantation is independent of the cell source and occurs within the first year post transplant. Bone Marrow Transplant 2001;27(12):1283–6. DOI: 10.1038/sj.bmt.1703069
61. Olivier M., Eeles R., Hollstein M. et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 2002;19:607–14. DOI: 10.1002/humu.10081
62. George B., Kantarjian H., Baran N. et al. TP53 in acute myeloid leukemia: molecular aspects and patterns of mutation. Int J Mol Sci 2021;22(19):10782. DOI: 10.3390/ijms221910782
63. Boregowda S.V., Krishnappa V., Strivelli J. et al. Basal p53 expression is indispensable for mesenchymal stem cell integrity. Cell Death Differ 2018;25:679–92. DOI: 10.1038/s41418-017-0004-4
64. Zhao Z., Zuber J., Diaz-Flores E. et al. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev 2010;24(13):1389–402. DOI: 10.1101/gad.1940710
65. Amadou A., Achatz M.I.W., Hainaut P. Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: temporal phases of Li–Fraumeni syndrome. Curr Opin Oncol 2018;30:23–9. DOI: 10.1097/CCO.0000000000000423
66. Valdez J.M., Nichols K.E., Kesserwan C. Li–Fraumeni syndrome: a paradigm for the understanding of hereditary cancer predisposition. Br J Haematol 2017;176(4):539–52. DOI: 10.1111/bjh.14461
67. Hunter A.M., Sallman D.A. Targeting TP53 mutations in myelodysplastic syndromes. Hematol Oncol Clin North Am 2020;34(2):421–40. DOI: 10.1016/j.hoc.2019.11.004
68. Swaminathan M., Bannon S.A., Routbort M. et al. Hematologic malignancies and Li–Fraumeni syndrome. Cold Spring Harb Mol Case Stud 2019;5(1):a003210. DOI: 10.1101/mcs.a003210
69. Tessoulin B., Descamps G., Moreau P. et al. PRIMA-1Met induces myeloma cell death independent of p53 by impairing the GSH/ROS balance. Blood 2014;124(10):1626–36. DOI: 10.1182/blood-2014-01-548800
70. Churpek J.E., Smith-Simmer K. DDX41-Associated familial myelodysplastic syndrome and acute myeloid leukemia. In: GeneReviews®. Eds.: M.P. Adam, D.B. Everman, G.M. Mirzaa et al. Seattle (WA): University of Washington, Seattle, 2021.
71. Papaemmanuil E., Gerstung M., Bullinger L. et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016;374(23):2209–21. DOI: 10.1056/NEJMoa1516192
72. Döhner H., Estey E., Grimwade D. et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017;129(4):424–47. DOI: 10.1182/blood-2016-08-733196
73. Lyu X., Li T., Zhu D. et al. Whole-genome sequencing as an alternative to analyze copy number abnormalities in acute myeloid leukemia and myelodysplastic syndrome. Leuk Lymphoma 2022;63(10):2301–10. DOI: 10.1080/10428194.2022.2080821
Review
For citations:
Makarova M.V., Nemtsova M.V., Chekini D.A., Chernevskiy D.K., Sagaydak O.V., Kosova E.V., Krinitsyna A.A., Belenikin M.S., Zeynalova P.A. Hereditary predisposition syndromes to myeloid neoplasms: diseases, genes and mechanisms of development. Oncohematology. 2024;19(2):88-100. (In Russ.) https://doi.org/10.17650/1818-8346-2024-19-2-88-100