Preview

Онкогематология

Расширенный поиск

Использование биологических микрочипов в онкогематологии

https://doi.org/10.17650/1818-8346-2006-0-1-2-25-37

Об авторе

Т. B. Наседкина
Институт молекулярной биологии им. В.А. Энгельгардта РАН,
Россия

Москва



Список литературы

1. Колчинский А.М., Грядунов Д.А., Лысов Ю.П. и др. Микрочипы на основе трехмерных ячеек геля: история и перспективы. Мол биол – 2004; 38(1):5–16.

2. Blohm D.H., Guiseppi-Elie A. New developments in microarray technology. Curr Opin Biotechnol 2001; 12:41–7.

3. Lockhart D.J., Winzeler E.A. Genomics, gene expression and DNA arrays. Nature 2000; 405: 827–36.

4. van Berkum N.L., Holstege F.C. DNA microarrays: raising the profile. Curr Opin Biotechnol 2001; 12: 48–52.

5. Hughes T.R., Shoemaker D.D. DNA microarrays for expression profiling. Curr Opin Chem Biol 2001; 5: 21–5.

6. Golub T.R., Slonim D.K., Tamayo P. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286: 531–7.

7. Alizadeh A., Eisen M., Davis R.E. et al. The lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harb Symp Quant Biol 1999, 64: 71–8.

8. Alizadeh A.A., Eisen M.B., Davis R.E. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–11.

9. Shipp M.A., Ross K.N., Tamayo P. et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002; 8: 68–74.

10. Rosenwald A., Wright G., Chan W.C. et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. New Engl J Med 2002; 346: 1937–47.

11. Lossos I.S., Czerwinski D.K., Alizadeh A.A. et al. Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. New Engl J Med 2004; 350: 1828–37.

12. Glas A.M., Kersten M.J., Delahaye L.J. et al. Gene expression profiling in follicular lymphoma to assess clinical aggressiveness and to guide the choice of treatment. Blood 2005; 105(1): 301–7.

13. Hofmann W.K., de Vos S., Tsukasaki K. et al. Altered apoptosis pathways in mantle cell lymphoma detected by oligonucleotide microarray. Blood 2001; 98: 787–94.

14. Martinez N., Camacho F.I., Algara P. et al. The molecular signature of mantle cell lymphoma reveals multiple signals favoring cell survival. Cancer Res 2003; 63: 8226–32.

15. Pui C.H., Evans W.E. Acute lymphoblastic leukemia. New Engl J Med 1998; 339: 605–15.

16. Moos P.J., Raetz E.A., Carlson M.A. et al. Identification of gene expression profiles that segregate patients with childhood leukemia. Clin Cancer Res 2002; 8(10): 3118–30.

17. Armstrong S.A., Staunton J.E., Silverman L.B. et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–7.

18. Rozovskaia T., Ravid-Amir O., Tillib S. et al. Expression profiles of acute lymphoblastic and myeloblastic leukemias with ALL-1 rearrangements. Proc Natl Acad Sci USA 2003; 100(13): 7853–8.

19. Tsutsumi S., Taketani T., Nishimura K. et al. Two distinct gene expression signatures in pediatric acute lymphoblastic leukemia with MLL rearrangements. Cancer Res 2003; 63: 4882–7.

20. Kohlmann A., Schoch C., Dugas M. et al. New insights into MLL gene rearranged acute leukemias using gene expression profiling: shared pathways, lineage commitment, and partner genes. Leukemia 2005; 19(6): 953–64.

21. Armstrong S.A., Kung A.L., Mabon M.E. et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 2003; 3(2): 173–83.

22. Brown P., Levis M., McIntyre E. et al. Combinations of the FLT3 inhibitor CEP701 and chemotherapy synergistically kill infant and childhood MLL-rearranged ALL cells in a sequence-dependent manner. Leukemia 2006; 20(8):1368–76.

23. Yeoh E.J., Ross M.E., Shurtleff S.A. et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002;1: 133–43.

24. Ross M.E., Zhou X., Song G. et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 2003; 102: 2951–9.

25. Kohlmann A., Schoch C., Schnittger S. et al. Pediatric acute lymphoblastic leukemia (ALL) gene expression signatures classify an independent cohort of adult ALL patients. Leukemia 2004; 18: 63–71.

26. Ferrando A.A., Look A.T. Gene expression profiling in T-cell acute lymphoblastic leukemia. Semin Hematol 2003; 40: 274–80.

27. Ferrando A.A., Neuberg D.S., Staunton J. et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

28. Ballerini P., Blaise A., Busson-Le Coniat M. et al. HOX11L2 expression defines a clinical subtype of pediatric TALL associated with poor prognosis. Blood 2002; 100: 991–7.

29. Ferrando A.A., Neuberg D.S., Dodge R.K. et al. Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia. Lancet 2004; 363: 535–6.

30. Chiaretti S., Li X., Gentleman R. et al. Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood 2004; 103: 2771–8.

31. Ravandi F., Kantarjian H., Giles F., Cortes J. New agents in acute myeloid leukemia and other myeloid disorders. Cancer 2004; 100: 441–54.

32. Look A.T. Oncogenic transcription factors in the human acute leukemias. Science 1997; 278: 1059–64.

33. Grimwade D., Walker H., Oliver F. et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 1998; 92: 2322–33.

34. Schoch C., Kohlmann A., Schnittger S. et al. Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc Natl Acad Sci USA 2002; 99: 10008–13.

35. Debernardi S., Lillington D.M., Chaplin T. et al. Genome-wide analysis of acute myeloid leukemia with normal karyotype reveals a unique pattern of homeobox gene expression distinct from those with translocation-mediated fusion events. Genes Chromosomes Cancer 2003; 37: 149–58.

36. Yagi T., Morimoto A., Eguchi M. et al. Identification of a gene expression signature associated with pediatric AML prognosis. Blood 2003; 102: 1849–56.

37. Valk P.J., Verhaak R.G., Beijen M.A. et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. New Engl J Med 2004; 350: 1617–28.

38. Bullinger L., Dohner K., Bair E. et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. New Engl J Med 2004; 350: 1605–16.

39. Park D.J., Vuong P.T., de Vos S. et al. Comparative analysis of genes regulated by PML/RAR alpha and PLZF/RAR alpha in response to retinoic acid using oligonucleotide arrays. Blood 2003; 102: 3727–36.

40. Rozman C., Montserrat E. Chronic lymphocytic leukemia. New Engl J Med 1995; 333: 1052–7.

41. Rai K.R., Sawitsky A., Cronkite E.P. et al. Clinical staging of chronic lymphocytic leukemia. Blood 1975; 46: 219–34.

42. Binet J.L., Auquier A., Dighiero G. et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 1981; 48: 198–206.

43. Hamblin T.J., Davis Z., Gardiner A. et al. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854.

44. Klein U., Tu Y., Stolovitzky G.A. et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med 2001; 194: 1625–38.

45. Rosenwald A., Alizadeh A.A., Widhopf G. et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 2001; 194: 1639–47.

46. Jelinek D.F., Tschumper R.C., Stolovitzky G.A. et al. Identification of a global gene expression signature of Bchronic lymphocytic leukemia. Mol Cancer Res 2003; 1: 346–61.

47. Wang J., Coombes K.R., Highsmith W.E. et al. Differences in gene expression between B-cell chronic lymphocytic leukemia and normal B cells: a metaanalysis of three microarray studies. Bioinformatics 2004; 20: 3166–78.

48. Crespo M., Bosch F., Villamor N. et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. New Engl J Med 2003; 348: 1764–75.

49. Wiestner A., Rosenwald A., Barry T.S. et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003; 101: 4944–51.

50. Bosch F., Muntanola A., Gine E. et al. Clinical implications of ZAP-70 expression in chronic lymphocytic leukemia. Cytometry B Clin Cytom 2006; 70B(4): 214–7.

51. Kuehl W.M., Bergsagel P.L. Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2002; 2: 175–87.

52. Kaufman J., Lonial S. Multiple myeloma: the role of transplant and novel treatment strategies. Semin Oncol 2004; 31: 99–105.

53. Bergsagel P.L., Kuehl W.M. Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma. Immunol Rev 2003; 194: 96–104.

54. Sawyer J.R., Waldron J.A., Jagannath S., Barlogie B. Cytogenetic findings in 200 patients with multiple myeloma. Cancer Genet Cytogenet 1995; 82:41–9.

55. Dewald G.W., Kyle R.A., Hicks G.A., Greipp P.R. The clinical significance of cytogenetic studies in 100 patients with multiple myeloma, plasma cell leukemia, or amyloidosis. Blood 1985; 66: 380–90.

56. Zhan F., Hardin J., Kordsmeier B. et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 2002; 99: 1745–57.

57. Claudio J.O., Masih-Khan E., Tang H. et al. A molecular compendium of genes expressed in multiple myeloma. Blood 2002; 100: 2175–86.

58. De Vos J., Thykjaer T., Tarte K. et al. Comparison of gene expression profiling between malignant and normal plasma cells with oligonucleotide arrays. Oncogene 2002; 21: 6848–57.

59. Zhan F., Tian E., Bumm K. et al. Gene expression profiling of human plasma cell differentiation and classification of multiple myeloma based on similarities to distinct stages of late-stage B-cell development. Blood 2003; 101: 1128–40.

60. Tian E., Zhan F., Walker R. et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. New Engl J Med 2003; 349: 2483–94.

61. Haferlach T., Kohlmann A., Schnittger S. et al. Global approach to the diagnosis of leukemia using gene expression profiling. Blood. 2005; 106(4): 1189–98.

62. Staal F., Cario G., Cazzaniga G. et al., Consensus quidelines for microarray gene expression analyses in leukemia from three European leukemia networks. Leukemia 2006; 20(8): 1385–92.

63. Pui C.H., Campana D., Evans W.E. Childhood acute lymphoblastic leukaemia – current status and future perspectives. Lancet Oncol 2001; 2: 597–607.

64. Shrappe M. Evolution of BFM trials for childhood ALL. Ann Hematol 2004; 83 (Suppl 1): 121–3.

65. Pui C.H., Relling M.V., Sandlund J.T. et al. Rationale and design of Total Therapy Study XV for newly diagnosed childhood acute lymphoblastic leukemia. Ann Hematol 2004; 83 (Suppl 1): 124–6.

66. Исаева Е.А., Жаринов В.С., Наседкина Т.В. и др. Анализ хромосомных аберраций и их прогностическое значение при остром лимфобластном лейкозе у детей. Вопр гематол онкол иммунопатол педиатр 2003; 2 (4): 59–66.

67. Rabbits T.H. Chromosomal translocations in human cancer. Nature 1994; 372: 143–9.

68. Rubnitz J.E., Look A.T. Molecular basis of leukemogenesis. Curr Opin Hematol 1998;5: 264–70.

69. Митяева О.Н., Наседкина Т.В., Жаринов В.С. и др. Анализ хромосомных транслокаций с участием гена MLL методом гибридизации с олигонуклеотидными микрочипами. Мол биол 2004; 38(3): 376–82.

70. Gra O.A., Sidorova J.V., Nikitin E.A. et al. Analysis of TCR gamma gene rearrangements using oligonucleotide microchip: a novel approach for the determination of T-cell clonality. (in press).

71. Nebert D.W. Polymorphisms in drugmetabolizing enzymes: what is their clinical relevance and why do they exist? Am J Hum Genet 1997; 60: 265–71.

72. Nebert D.W., McKinnon R.A., Puga Human drug-metabolizing enzyme polymorphisms: effects on risk of toxicity and cancer. DNA Cell Biol 1996; 15: 273–80.

73. Elion G.B. The purine path to chemotherapy. Science 1989; 244: 441–7.

74. Weinshilboum R.M., Sladek S.L. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 1980; 32: 651–62.

75. McLeod H.L., Lin J.S., Scott M.C. et al. Thiopurine methyltransferase activity in American white subjects and black subjects. Clin Pharmacol Ther 1994; 55: 15–20.

76. Roberts W.M., Estrov Z., Kitchingam G.R. et al. The clinical significance of residual disease in childhood acute lymphoblastic leukemia as detected by polymerase chain reaction amplification of antigen-receptor gene sequences. Leuk Lymphoma 1996; 20: 181–97.

77. Krynetski E.Y., Evans E.E. Pharmacogenetics as a molecular basis for individualized drug therapy: the thiopurine S-methyltransferase paradigm. Pharm Res 1999, 16(3): 342–9.

78. Чупова Н.В., Самочатова Е.В., Руднева А.Е. и др. Генетический полиморфизм ТПМТ в лечении детей с острым лимфобластным лейкозом. Гематол трансфузиол 2005; 6: 3–9.

79. McLeod H.L., Coulthard S., Thomas A.E. et al. Analysis of thiopurine methyltransferase variant alleles in childhood acute lymphoblastic leukaemia. Br J Haematol 1999, 105: 696–00.

80. Balta G., Yuksek N., Ozyurek E. et al. Characterization of MTHFR, GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes in childhood acute leukemia. Am J Hematol 2003; 73: 154–60.

81. Celander M., Weisbrod R., Stegeman J.J. Glucocorticoid potentiation of cytochrome P4501A1 induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin in porcine and human endothelial cells in culture Biochem Biophys Res Commun 1997; 232(3): 749–53.

82. Глотов А.С., Наседкина Т.В., Иващенко Т.Э. и др. Создание биочипа для анализа полиморфизма в генах системы биотрансформации. Молекуляр биол 2005; 39: 403–12.

83. Гра О.А., Глотов А.С., Кожекбаева Ж.М. и др. Опыт использования биочипов для анализа полиморфных вариантов гена CYP1A1 при лейкозах у детей. Мед генет 2006; 4: 34–8.

84. Krajinovic M., Labuda D., Richer C. et al. Susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 genetic polymorphisms. Blood 1999; 93(5): 1496–501.

85. Krajinovic M., Labuda D., Mathonnet et al. Polymorphisms in genes encoding drugs and xenobiotic metabolizing enzymes, DNA repair enzymes, and response to treatment of childhood Acute Lymphoblastic Leukemia. Clin Cancer Res 2002; 8: 802–10.


Рецензия

Для цитирования:


Наседкина Т.B. Использование биологических микрочипов в онкогематологии. Онкогематология. 2006;(1-2):25-37. https://doi.org/10.17650/1818-8346-2006-0-1-2-25-37

For citation:


Nasedkina T.V. Use of biological microarrays in oncohematology. Oncohematology. 2006;(1-2):25-37. (In Russ.) https://doi.org/10.17650/1818-8346-2006-0-1-2-25-37

Просмотров: 131


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)