Preview

Oncohematology

Advanced search

New perspectives in the treatment of patients with intermediate-2 and high-risk myelodysplastic syndrome

https://doi.org/10.17650/1818-8346-2022-17-4-106-117

Abstract

Currently, therapeutic tactics in patients with myelodysplastic syndrome is based on risk-adapted therapy followed by allogeneic hematopoietic stem cell transplantation, which remains the only radical method of treatment. for patients who cannot undergo transplantation, the problem of finding new methods of treatment remains urgent. Modern knowledge about the pathogenesis of the disease allows us to get an idea of the key pathways associated with oncogenesis and to develop new epigenetic methods of treatment.

Aim. To consider the therapeutic approaches currently used in the treatment of patients with myelodysplastic syndrome of low and high risk groups, as well as to demonstrate the relevance of the search for new methods of targeted and immunotherapy. In this review, we highlight the achievements in the field of targeted therapy, in particular, the study of the biology of the TIM3 molecule and its ligands, new data from clinical trials of anti-TIM3 monoclonal antibodies.

About the Authors

E. V. Morozova
Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

6–8 L’va Tolstogo St., Saint Petersburg 197022



N. Yu. Tsvetkov
Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

6–8 L’va Tolstogo St., Saint Petersburg 197022



M. V. Barabanshchikova
Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

6–8 L’va Tolstogo St., Saint Petersburg 197022



K. S. Yurovskaya
Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

6–8 L’va Tolstogo St., Saint Petersburg 197022



I. S. Moiseev
Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

6–8 L’va Tolstogo St., Saint Petersburg 197022



References

1. Afanasyev B.V., Zubarovskaya L. Pediatric myelodysplastic syndrome. Rossiyskiy zhurnal detskoy gematologii i onkologii = Russian Journal of Pediatric Hematology and Oncology 2018;5(3):23–35. (In Russ.). DOI: 10.17650/2311­1267­2018­5­3­23­35

2. Greenberg P. The myelodysplastic syndromes. In: Hematology: Basic Principles and Practice. Eds.: R. Hoffman, E. Benz, S. Shattil et al. New York, NY: Churchill Livingstone, 2000. Pp. 1106–1129.

3. Gattermann N. Iron overload in myelodysplastic syndromes (MDS). Int J Hematol 2018;107(1):55–63. DOI: 10.1007/s12185­017­2367­1

4. Vinchi F., Muckenthaler M.U., Da Silva M.C. et al. Atherogenesis and iron: from epidemiology to cellular level. Front Pharmacol 2014;5:94. DOI: 10.3389/fphar.2014.00094

5. Duffy S.J., Biegelsen E.S., Holbrook M. et al. Iron chelation improves endothelial function in patients with coronary artery disease. Circulation 2001;103(23):2799–804. DOI: 10.1161/01. cir.103.23.2799

6. Dayyani F., Conley A.P., Stromet S.S. et al. Cause of death in patients with lower­risk myelodysplastic syndrome. Cancer 2010;116(9):2174–9. DOI: 10.1002/cncr.24984

7. Steensma D.P. Graphical representation of clinical outcomes for patients with myelodysplastic syndromes. Leuk Lymphoma 2016;57(1):17–20. DOI: 10.3109/10428194.2015.1061191

8. Savchenko V.G., Parovichnikova E.N., Kokhno A.V. et al. National clinical guidelines for the diagnosis and treatment of myelodysplastic syndromes adults. Gematologiya i transfuziologiya = Hematology and Transfusiology 2016;61(1–S4):1–32. (In Russ.).

9. Garcia­Manero G., Shan J., Faderl S. et al. A prognostic score for patients with lower risk myelodysplastic syndrome. Leukemia 2008;22(3):538–43. DOI: 10.1038/sj.leu.2405070

10. Itzykson R., Crouch S., Travaglino E. et al. Early platelet count kinetics has prognostic value in lower­risk myelodysplastic syndromes. Blood Adv 2018;2(16):2079–89. DOI: 10.1182/ bloodadvances.2018020495

11. Mittelman M., Zeidman A. Platelet function in the myelodysplastic syndromes. Int J Hematol 2000;71(2):95–8.

12. Hellstrom­Lindberg E., Gulbrandsen N., Lindberg G. et al. A validated decision model for treating the anaemia of myelodysplastic syndromes with erythropoietin + granulocyte colony­stimulating factor: significant effects on quality of life. Br J Haematol 2003;120(6):1037–46. DOI: 10.1046/j.1365­2141.2003.04153.x

13. List A., Kurtin S., Roe D.J. et al. Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med 2005;352(6):549–57. DOI: 10.1056/NEJMoa041668

14. List A., Bennett J., Giagounidis A. et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med 2006;355(14):1456–65. DOI: 10.1056/NEJMoa061292

15. Steensma D.P. Hematopoietic growth factors in myelodysplastic syndromes. Semin Oncol 2011;38:635–47. DOI: 10.1053/j. seminoncol.2011.04.014

16. Brierley C.K., Steensma D.P. Thrombopoiesis­stimulating agents and myelodysplastic syndromes. Br J Haematol 2015;169(3):309–23. DOI: 10.1111/bjh.13285

17. Mittelman M., Platzbecker U., Afanasyev B. et al. Eltrombopag for advanced myelodysplastic syndromes or acute myeloid leukaemia and severe thrombocytopenia (ASPIRE): a randomised, placebo­controlled, phase 2 trial. Lancet Haematol 2018;5(1):e34– 43. DOI: 10.1016/S2352­3026(17)30228­4

18. Oliva E.N, Alati C., Santini V. et al. Eltrombopag versus placebo for low­risk myelodysplastic syndromes with thrombocytopenia (EQoL­MDS): phase 1 results of a single­blind, randomised, controlled, phase 2 superiority trial. Lancet Haematol 2017;4(3):e127–36. DOI: 10.1016/S2352­3026(17)30012­1

19. Shastri A., Verma A.K. Eltrombopag reduces clinically relevant thrombocytopenic events in higher risk MDS and AML. Lancet Haematol 2018;5(1):e6–7. DOI: 10.1016/S2352­3026(17)30229­6

20. Villar S., Robin M. Allogeneic stem cell transplantation for MDS. Hematol 2021;2(3):545–55. DOI: 10.3390/hemato2030034

21. Greenberg P., Cox C., LeBeau M.M. et al. International scoring system for evaluating prognosis in myelodysplastic syndromes [published correction appears in Blood 1998;91(3):1100]. Blood 1997;89(6):2079–88.

22. Cataldo V.D., Cortes J., Quintás­Cardama A. Azacitidine for the treatment of myelodysplastic syndrome. Expert Rev Anticancer Ther 2009;9(7):875–84. DOI: 10.1586/era.09.61

23. Berg T., Guo Y., Abdelkarim M. et al. Reversal of p15/INK4b hypermethylation in AML1/ETO­positive and ­negative myeloid leukemia cell lines. Leuk Res 2007;31(4):497–506. DOI: 10.1016/ j.leukres.2006.08.008

24. Kimura S., Kuramoto K., Homan J. et al. Antiproliferative and antitumor effects of azacitidine against the human myelodysplastic syndrome cell line SKM­1. Anticancer Res 2012;32(3):795–8.

25. Stresemann C., Bokelmann I., Mahlknecht U., Lyko F. Azacytidine causes complex DNA methylation responses in myeloid leukemia. Mol Cancer Ther 2008;7(9):2998–3005. DOI: 10.1158/1535­7163. MCT­08­0411

26. Fabiani E., Leone G., Giachelia M. et al. Analysis of genome­wide methylation and gene expression induced by 5­aza­2­deoxycytidine identifies BCL2L10 as a frequent methylation target in acute myeloid leukemia. Leuk Lymphoma 2010;51(12):2275–84. DOI: 10.3109/10428194.2010.528093

27. Khan C., Pathe N., Fazal S. et al. Azacitidine in the management of patients with myelodysplastic syndromes. Ther Adv Hematol 2012;3(6):355–73. DOI: 10.1177/2040620712464882

28. Fenaux P., Mufti G.J., Hellstrom­Lindberg E. et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher­risk myelodysplastic syndromes: a randomised, open­label, phase III study. Lancet Oncol 2009;10(3):223–32. DOI: 10.1016/S1470­2045(09)70003­8

29. Gurion R., Vidal L., Gafter­Gvili A. et al. 5­azacitidine prolongs overall survival in patients with myelodysplastic syndrome – a systematic review and meta­analysis. Haematologica 2010;95(2):303–10. DOI: 10.3324/haematol.2009.010611

30. Cheson B.D., Jasperse D.M., Simon R. et al. A critical appraisal of low­dose cytosine arabinoside in patients with acute nonlymphocytic leukemia and myelodysplastic syndromes. J Clin Oncol 1986;4(12):1857–64. DOI: 10.1200/JCO.1986.4.12.1857

31. Fenaux P., Haase D., Sanz G.F. et al. Myelodysplastic syndromes: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow­up. Ann Oncol 2014;25(Suppl 3):iii57–69. DOI: 10.1093/annonc/mdu180

32. Kantarjian H., O’brien S., Cortes J. et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high­risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer 2006;106(5):1090–8. DOI: 10.1002/cncr.21723

33. Schmid C., Wreede L., Biezen A. et al. Outcome after relapse of myelodysplastic syndrome and secondary acute myeloid leukemia following allogeneic stem cell transplantation: a retrospective registry analysis on 698 patients by the Chronic Malignancies Working Party of the European Society of Blood and Marrow Transplantation. Haematologica 2018;103(2):237–45. DOI: 10.3324/haematol.2017.168716

34. Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12(4):252–64. DOI: 10.1038/nrc3239

35. Riva A., Chokshi S. Immune checkpoint receptors: homeostatic regulators of immunity. Hepatol Int 2018;12(3):223–36. DOI: 10.1007/s12072­018­9867­9

36. Darvin P., Toor S.M., Sasidharan N.V. et al. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 2018;50(12):1–11. DOI: 10.1038/s12276­018­0191­1

37. Havel J.J., Chowell D., Chan T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer 2019;19(3):133–50. DOI: 10.1038/s41568­019­0116­x

38. Pagliuca S., Gurnari C., Visconte V. Molecular targeted therapy in myelodysplastic syndromes: new options for tailored treatments. Cancers 2021;13(4):784. DOI: 10.3390/cancers13040784

39. Boddu P., Kantarjian H., Garcia­Manero G. et al. The emerging role of immune checkpoint based approaches in AML and MDS. Leuk Lymphoma 2018;59(4):790–802. DOI: 10.1080/10428194.201 7.1344905

40. Zeidan A.M., Knaus H.A., Robinson T.M. et al. A multi­center phase I trial of ipilimumab in patients with myelodysplastic syndromes following hypomethylating agent failure. Clin Cancer Res 2018;24(15):3519–27. DOI: 10.1158/1078­0432.CCR­17­3763

41. Wendelbo O., Nesthus I., Sjo M. et al. Functional characterization of T lymphocytes derived from patients with acute myelogenous leukemia and chemotherapy­induced leukopenia. Cancer Immunol Immunother 2004;53(8):740–7. DOI: 10.1007/s00262­004­0505­0

42. Garcia­Manero G., Sasaki K., Montalban­Bravo G. et al. A phase II study of nivolumab or ipilimumab with or without azacitidine for patients with myelodysplastic syndrome (MDS). Blood 2018;132.

43. Garcia­Manero G., Tallman M.S., Martinell I.G. et al. Pembrolizumab, a PD­1 inhibitor, in patients with myelodysplastic syndrome (MDS) after failure of hypomethylating agent treatment. Blood 2016;128. DOI: 10.1182/blood.V128.22.345.345

44. Davids M.S., Kim H.T., Bachireddy P. et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med 2016;375(2):143–53. DOI: 10.1056/NEJMoa1601202

45. Daver N., Boddu P., Garcia­Manero G. et al. Hypomethylating agents in combination with immune checkpoint inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Leukemia 2018;32(5):1094–105. DOI: 10.1038/s41375­018­0070­8

46. Khaznadar Z., Henry G., Setterblad N. et al. Acute myeloid leukemia impairs natural killer cells through the formation of a deficient cytotoxic immunological synapse. Eur J Immunol 2014;44(10):3068–80. DOI: 10.1002/eji.201444500

47. Bewersdorf J.P., Shallis R.M., Zeidan A.M. Immune checkpoint inhibition in myeloid malignancies: moving beyond the PD­1/PD­L1 and CTLA­4 pathways. Blood Rev 2021;45:100709. DOI: 10.1016/j.blre.2020.100709.

48. Chiba S., Baghdadi M., Akiba H. et al. Tumor­infiltrating DCs suppress nucleic acid­mediated innate immune responses through interactions between the receptor TIM3 and the alarmin HMGB1. Nat Immunol 2012;13(9):832–42. DOI: 10.1038/ni.2376

49. Huang Y.H., Zhu C., Kondo Y. et al. CEACAM1 regulates TIM3mediated tolerance and exhaustion. Nature 2015;517(7534):386–90. DOI: 10.1038/nature13848

50. Kikushige Y., Miyamoto T., Yuda J. et al. A TIM3/Gal­9 autocrine stimulatory loop drives self­renewal of human myeloid leukemia stem cells and leukemic progression. Cell Stem Cell 2015;17(3):341–52.

51. De Kruyff R.H., Bu X., Ballesteros A. et al. T cell/transmembrane, Ig, and mucin­3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol 2010;184(4):1918–30. DOI: 10.4049/jimmunol.0903059

52. Zhu C., Anderson A.C., Schubart A. et al. The TIM3 ligand galectin­9 negatively regulates T helper type 1 immunity. Nat Immunol 2005;6(12):1245–52. DOI: 10.1038/ni1271

53. Monney L., Sabatos C.A., Gaglia J.L. et al. Th1­specific cell surface protein TIM3 regulates macrophage activation and severity of an autoimmune disease. Nature 2002;415(6871):536–41. DOI: 10.1038/415536a

54. Wolf Y., Anderson A.C., Kuchroo V.K. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol 2020;20(3):173–85. DOI: 10.1038/s41577­019­0224­6

55. Wang Y., Zhao E., Zhang Z. et al. Association between Tim3 and Gal9 expression and gastric cancer prognosis. Oncol Rep 2018;40(4):2115–26. DOI: 10.3892/or.2018.6627

56. Gonçalves Silva I., Yasinska I.M., Sakhnevych S.S. et al. The TIM3galectin­9 secretory pathway is involved in the immune escape of human acute myeloid leukemia cells. EBioMedicine 2017;22: 44–57. DOI: 10.1016/j.ebiom.2017.07.018

57. Li H., Wu K., Tao K. et al. TIM3/galectin­9 signaling pathway mediates T­cell dysfunction and predicts poor prognosis in patients with hepatitis B virus­associated hepatocellular carcinoma. Hepatology 2012;56(4):1342–51. DOI: 10.1002/hep.25777

58. Cao E., Zang X., Ramagopal U.A. et al. T cell immunoglobulin mucin­3 crystal structure reveals a galectin­9independent ligand­binding surface. Immunity 2007;26(3):311–21. DOI: 10.1016/j.immuni.2007.01.016

59. Kang C.W., Dutta A., Chang L.Y. et al. Apoptosis of tumor infiltrating effector TIM3+CD8+ T cells in colon cancer. Sci Rep 2015;5:15659. DOI: 10.1038/srep15659

60. Kikushige Y., Shima T., Takayanagi S. et al. TIM3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell 2010;7(6):708–17. DOI: 10.1016/j.stem.2010.11.014

61. Kikushige Y., Miyamoto T. TIM3 as a novel therapeutic target for eradicating acute myelogenous leukemia stem cells. Int J Hematol 2013;98(6):627–33. DOI: 10.1007/s12185­013­1433­6

62. Asayama T., Tamura H., Ishibashi M. et al. Functional expression of TIM3 on blasts and clinical impact of its ligand galectin­9 in myelodysplastic syndromes. Oncotarget 2017;8(51):88904–17. DOI: 10.18632/oncotarget.21492

63. Dama P., Tang M., Fulton N. et al. Gal9/TIM3 expression level is higher in AML patients who fail chemotherapy. J Immunother Cancer 2019;7(1):175. DOI: 10.1186/s40425­019­0611­3

64. Kong Y., Zhang J., Claxton D.F. et al. PD­1(hi)TIM3(+) T cells associate with and predict leukemia relapse in AML patients post allogeneic stem cell transplantation. Blood Cancer J 2015;5(7):e330. DOI: 10.1038/bcj.2015.58

65. Gonçalves Silva I., Rüegg L., Gibbs B.F. et al. The immune receptor TIM3 acts as a trafficker in a TIM3/galectin­9 autocrine loop in human myeloid leukemia cells. Oncoimmunology 2016;5(7):e1195535. DOI: 10.1080/2162402X.2016.1195535

66. Acharya N., Sabatos­Peyton C., Anderson A.C. TIM3 finds its place in the cancer immunotherapy landscape. J Immunother Cancer 2020;8(1):e000911. DOI: 10.1136/jitc­2020­0091

67. Dardalhon V., Anderson A.C., Karman J. et al. TIM3/galectin­9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly–6G+ myeloid cells. J Immunol 2010;185(3):1383– 92. DOI: 10.4049/jimmunol.0903275

68. Gao X., Zhu Y., Li G. et al. TIM3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS One 2012;7(2):e30676. DOI: 10.1371/journal.pone.0030676

69. Jones R.B., Ndhlovu L.C., Barbour J.D. et al. TIM3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV­1 infection. J Exp Med 2008;205(12):2763–79. DOI: 10.1084/jem.20081398

70. Fourcade J., Sun Z., Benallaoua M. et al. Upregulation of TIM3 and PD­1 expression is associated with tumor antigen­specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 2010;207(10):2175–86. DOI: 10.1084/jem.20100637

71. Sakuishi K., Apetoh L., Sullivan J.M. et al. Targeting TIM3 and PD­1 pathways to reverse T cell exhaustion and restore anti­tumor immunity. J Exp Med 2010;207(10):2187–94. DOI: 10.1084/jem.20100643

72. Yang Z.Z., Grote D.M., Ziesmer S.C. et al. IL­12 upregulates TIM3 expression and induces T cell exhaustion in patients with follicular B cell non­Hodgkin lymphoma. J Clin Invest 2012;122(4):1271–82. DOI: 10.1172/JCI59806

73. Liu J., Zhang S., Hu Y. et al. Targeting PD­1 and TIM3 pathways to reverse CD8 T­cell exhaustion and enhance ex vivo T­cell responses to autologous dendritic/tumor vaccines. J Immunother 2016;39(4):171–80. DOI: 10.1097/CJI.0000000000000122

74. Borate U., Esteve J., Porkka K. et al. Anti­TIM3 antibody MBG453 in combination with hypomethylating agents in patients with highrisk myelodysplastic syndrome and acute myeloid leukemia: a phase 1 study. Paper presented at: 25th EHA Congress. June 11–21, 2020 [abstract S185].


Review

For citations:


Morozova E.V., Tsvetkov N.Yu., Barabanshchikova M.V., Yurovskaya K.S., Moiseev I.S. New perspectives in the treatment of patients with intermediate-2 and high-risk myelodysplastic syndrome. Oncohematology. 2022;17(4):106-117. (In Russ.) https://doi.org/10.17650/1818-8346-2022-17-4-106-117

Views: 9177


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)