New perspectives in the treatment of patients with intermediate-2 and high-risk myelodysplastic syndrome
https://doi.org/10.17650/1818-8346-2022-17-4-106-117
Abstract
Currently, therapeutic tactics in patients with myelodysplastic syndrome is based on risk-adapted therapy followed by allogeneic hematopoietic stem cell transplantation, which remains the only radical method of treatment. for patients who cannot undergo transplantation, the problem of finding new methods of treatment remains urgent. Modern knowledge about the pathogenesis of the disease allows us to get an idea of the key pathways associated with oncogenesis and to develop new epigenetic methods of treatment.
Aim. To consider the therapeutic approaches currently used in the treatment of patients with myelodysplastic syndrome of low and high risk groups, as well as to demonstrate the relevance of the search for new methods of targeted and immunotherapy. In this review, we highlight the achievements in the field of targeted therapy, in particular, the study of the biology of the TIM3 molecule and its ligands, new data from clinical trials of anti-TIM3 monoclonal antibodies.
About the Authors
E. V. MorozovaRussian Federation
6–8 L’va Tolstogo St., Saint Petersburg 197022
N. Yu. Tsvetkov
Russian Federation
6–8 L’va Tolstogo St., Saint Petersburg 197022
M. V. Barabanshchikova
Russian Federation
6–8 L’va Tolstogo St., Saint Petersburg 197022
K. S. Yurovskaya
Russian Federation
6–8 L’va Tolstogo St., Saint Petersburg 197022
I. S. Moiseev
Russian Federation
6–8 L’va Tolstogo St., Saint Petersburg 197022
References
1. Afanasyev B.V., Zubarovskaya L. Pediatric myelodysplastic syndrome. Rossiyskiy zhurnal detskoy gematologii i onkologii = Russian Journal of Pediatric Hematology and Oncology 2018;5(3):23–35. (In Russ.). DOI: 10.17650/231112672018532335
2. Greenberg P. The myelodysplastic syndromes. In: Hematology: Basic Principles and Practice. Eds.: R. Hoffman, E. Benz, S. Shattil et al. New York, NY: Churchill Livingstone, 2000. Pp. 1106–1129.
3. Gattermann N. Iron overload in myelodysplastic syndromes (MDS). Int J Hematol 2018;107(1):55–63. DOI: 10.1007/s1218501723671
4. Vinchi F., Muckenthaler M.U., Da Silva M.C. et al. Atherogenesis and iron: from epidemiology to cellular level. Front Pharmacol 2014;5:94. DOI: 10.3389/fphar.2014.00094
5. Duffy S.J., Biegelsen E.S., Holbrook M. et al. Iron chelation improves endothelial function in patients with coronary artery disease. Circulation 2001;103(23):2799–804. DOI: 10.1161/01. cir.103.23.2799
6. Dayyani F., Conley A.P., Stromet S.S. et al. Cause of death in patients with lowerrisk myelodysplastic syndrome. Cancer 2010;116(9):2174–9. DOI: 10.1002/cncr.24984
7. Steensma D.P. Graphical representation of clinical outcomes for patients with myelodysplastic syndromes. Leuk Lymphoma 2016;57(1):17–20. DOI: 10.3109/10428194.2015.1061191
8. Savchenko V.G., Parovichnikova E.N., Kokhno A.V. et al. National clinical guidelines for the diagnosis and treatment of myelodysplastic syndromes adults. Gematologiya i transfuziologiya = Hematology and Transfusiology 2016;61(1–S4):1–32. (In Russ.).
9. GarciaManero G., Shan J., Faderl S. et al. A prognostic score for patients with lower risk myelodysplastic syndrome. Leukemia 2008;22(3):538–43. DOI: 10.1038/sj.leu.2405070
10. Itzykson R., Crouch S., Travaglino E. et al. Early platelet count kinetics has prognostic value in lowerrisk myelodysplastic syndromes. Blood Adv 2018;2(16):2079–89. DOI: 10.1182/ bloodadvances.2018020495
11. Mittelman M., Zeidman A. Platelet function in the myelodysplastic syndromes. Int J Hematol 2000;71(2):95–8.
12. HellstromLindberg E., Gulbrandsen N., Lindberg G. et al. A validated decision model for treating the anaemia of myelodysplastic syndromes with erythropoietin + granulocyte colonystimulating factor: significant effects on quality of life. Br J Haematol 2003;120(6):1037–46. DOI: 10.1046/j.13652141.2003.04153.x
13. List A., Kurtin S., Roe D.J. et al. Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med 2005;352(6):549–57. DOI: 10.1056/NEJMoa041668
14. List A., Bennett J., Giagounidis A. et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med 2006;355(14):1456–65. DOI: 10.1056/NEJMoa061292
15. Steensma D.P. Hematopoietic growth factors in myelodysplastic syndromes. Semin Oncol 2011;38:635–47. DOI: 10.1053/j. seminoncol.2011.04.014
16. Brierley C.K., Steensma D.P. Thrombopoiesisstimulating agents and myelodysplastic syndromes. Br J Haematol 2015;169(3):309–23. DOI: 10.1111/bjh.13285
17. Mittelman M., Platzbecker U., Afanasyev B. et al. Eltrombopag for advanced myelodysplastic syndromes or acute myeloid leukaemia and severe thrombocytopenia (ASPIRE): a randomised, placebocontrolled, phase 2 trial. Lancet Haematol 2018;5(1):e34– 43. DOI: 10.1016/S23523026(17)302284
18. Oliva E.N, Alati C., Santini V. et al. Eltrombopag versus placebo for lowrisk myelodysplastic syndromes with thrombocytopenia (EQoLMDS): phase 1 results of a singleblind, randomised, controlled, phase 2 superiority trial. Lancet Haematol 2017;4(3):e127–36. DOI: 10.1016/S23523026(17)300121
19. Shastri A., Verma A.K. Eltrombopag reduces clinically relevant thrombocytopenic events in higher risk MDS and AML. Lancet Haematol 2018;5(1):e6–7. DOI: 10.1016/S23523026(17)302296
20. Villar S., Robin M. Allogeneic stem cell transplantation for MDS. Hematol 2021;2(3):545–55. DOI: 10.3390/hemato2030034
21. Greenberg P., Cox C., LeBeau M.M. et al. International scoring system for evaluating prognosis in myelodysplastic syndromes [published correction appears in Blood 1998;91(3):1100]. Blood 1997;89(6):2079–88.
22. Cataldo V.D., Cortes J., QuintásCardama A. Azacitidine for the treatment of myelodysplastic syndrome. Expert Rev Anticancer Ther 2009;9(7):875–84. DOI: 10.1586/era.09.61
23. Berg T., Guo Y., Abdelkarim M. et al. Reversal of p15/INK4b hypermethylation in AML1/ETOpositive and negative myeloid leukemia cell lines. Leuk Res 2007;31(4):497–506. DOI: 10.1016/ j.leukres.2006.08.008
24. Kimura S., Kuramoto K., Homan J. et al. Antiproliferative and antitumor effects of azacitidine against the human myelodysplastic syndrome cell line SKM1. Anticancer Res 2012;32(3):795–8.
25. Stresemann C., Bokelmann I., Mahlknecht U., Lyko F. Azacytidine causes complex DNA methylation responses in myeloid leukemia. Mol Cancer Ther 2008;7(9):2998–3005. DOI: 10.1158/15357163. MCT080411
26. Fabiani E., Leone G., Giachelia M. et al. Analysis of genomewide methylation and gene expression induced by 5aza2deoxycytidine identifies BCL2L10 as a frequent methylation target in acute myeloid leukemia. Leuk Lymphoma 2010;51(12):2275–84. DOI: 10.3109/10428194.2010.528093
27. Khan C., Pathe N., Fazal S. et al. Azacitidine in the management of patients with myelodysplastic syndromes. Ther Adv Hematol 2012;3(6):355–73. DOI: 10.1177/2040620712464882
28. Fenaux P., Mufti G.J., HellstromLindberg E. et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higherrisk myelodysplastic syndromes: a randomised, openlabel, phase III study. Lancet Oncol 2009;10(3):223–32. DOI: 10.1016/S14702045(09)700038
29. Gurion R., Vidal L., GafterGvili A. et al. 5azacitidine prolongs overall survival in patients with myelodysplastic syndrome – a systematic review and metaanalysis. Haematologica 2010;95(2):303–10. DOI: 10.3324/haematol.2009.010611
30. Cheson B.D., Jasperse D.M., Simon R. et al. A critical appraisal of lowdose cytosine arabinoside in patients with acute nonlymphocytic leukemia and myelodysplastic syndromes. J Clin Oncol 1986;4(12):1857–64. DOI: 10.1200/JCO.1986.4.12.1857
31. Fenaux P., Haase D., Sanz G.F. et al. Myelodysplastic syndromes: ESMO Clinical Practice Guidelines for diagnosis, treatment and followup. Ann Oncol 2014;25(Suppl 3):iii57–69. DOI: 10.1093/annonc/mdu180
32. Kantarjian H., O’brien S., Cortes J. et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or highrisk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer 2006;106(5):1090–8. DOI: 10.1002/cncr.21723
33. Schmid C., Wreede L., Biezen A. et al. Outcome after relapse of myelodysplastic syndrome and secondary acute myeloid leukemia following allogeneic stem cell transplantation: a retrospective registry analysis on 698 patients by the Chronic Malignancies Working Party of the European Society of Blood and Marrow Transplantation. Haematologica 2018;103(2):237–45. DOI: 10.3324/haematol.2017.168716
34. Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12(4):252–64. DOI: 10.1038/nrc3239
35. Riva A., Chokshi S. Immune checkpoint receptors: homeostatic regulators of immunity. Hepatol Int 2018;12(3):223–36. DOI: 10.1007/s1207201898679
36. Darvin P., Toor S.M., Sasidharan N.V. et al. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 2018;50(12):1–11. DOI: 10.1038/s1227601801911
37. Havel J.J., Chowell D., Chan T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer 2019;19(3):133–50. DOI: 10.1038/s415680190116x
38. Pagliuca S., Gurnari C., Visconte V. Molecular targeted therapy in myelodysplastic syndromes: new options for tailored treatments. Cancers 2021;13(4):784. DOI: 10.3390/cancers13040784
39. Boddu P., Kantarjian H., GarciaManero G. et al. The emerging role of immune checkpoint based approaches in AML and MDS. Leuk Lymphoma 2018;59(4):790–802. DOI: 10.1080/10428194.201 7.1344905
40. Zeidan A.M., Knaus H.A., Robinson T.M. et al. A multicenter phase I trial of ipilimumab in patients with myelodysplastic syndromes following hypomethylating agent failure. Clin Cancer Res 2018;24(15):3519–27. DOI: 10.1158/10780432.CCR173763
41. Wendelbo O., Nesthus I., Sjo M. et al. Functional characterization of T lymphocytes derived from patients with acute myelogenous leukemia and chemotherapyinduced leukopenia. Cancer Immunol Immunother 2004;53(8):740–7. DOI: 10.1007/s0026200405050
42. GarciaManero G., Sasaki K., MontalbanBravo G. et al. A phase II study of nivolumab or ipilimumab with or without azacitidine for patients with myelodysplastic syndrome (MDS). Blood 2018;132.
43. GarciaManero G., Tallman M.S., Martinell I.G. et al. Pembrolizumab, a PD1 inhibitor, in patients with myelodysplastic syndrome (MDS) after failure of hypomethylating agent treatment. Blood 2016;128. DOI: 10.1182/blood.V128.22.345.345
44. Davids M.S., Kim H.T., Bachireddy P. et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med 2016;375(2):143–53. DOI: 10.1056/NEJMoa1601202
45. Daver N., Boddu P., GarciaManero G. et al. Hypomethylating agents in combination with immune checkpoint inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Leukemia 2018;32(5):1094–105. DOI: 10.1038/s4137501800708
46. Khaznadar Z., Henry G., Setterblad N. et al. Acute myeloid leukemia impairs natural killer cells through the formation of a deficient cytotoxic immunological synapse. Eur J Immunol 2014;44(10):3068–80. DOI: 10.1002/eji.201444500
47. Bewersdorf J.P., Shallis R.M., Zeidan A.M. Immune checkpoint inhibition in myeloid malignancies: moving beyond the PD1/PDL1 and CTLA4 pathways. Blood Rev 2021;45:100709. DOI: 10.1016/j.blre.2020.100709.
48. Chiba S., Baghdadi M., Akiba H. et al. Tumorinfiltrating DCs suppress nucleic acidmediated innate immune responses through interactions between the receptor TIM3 and the alarmin HMGB1. Nat Immunol 2012;13(9):832–42. DOI: 10.1038/ni.2376
49. Huang Y.H., Zhu C., Kondo Y. et al. CEACAM1 regulates TIM3mediated tolerance and exhaustion. Nature 2015;517(7534):386–90. DOI: 10.1038/nature13848
50. Kikushige Y., Miyamoto T., Yuda J. et al. A TIM3/Gal9 autocrine stimulatory loop drives selfrenewal of human myeloid leukemia stem cells and leukemic progression. Cell Stem Cell 2015;17(3):341–52.
51. De Kruyff R.H., Bu X., Ballesteros A. et al. T cell/transmembrane, Ig, and mucin3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol 2010;184(4):1918–30. DOI: 10.4049/jimmunol.0903059
52. Zhu C., Anderson A.C., Schubart A. et al. The TIM3 ligand galectin9 negatively regulates T helper type 1 immunity. Nat Immunol 2005;6(12):1245–52. DOI: 10.1038/ni1271
53. Monney L., Sabatos C.A., Gaglia J.L. et al. Th1specific cell surface protein TIM3 regulates macrophage activation and severity of an autoimmune disease. Nature 2002;415(6871):536–41. DOI: 10.1038/415536a
54. Wolf Y., Anderson A.C., Kuchroo V.K. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol 2020;20(3):173–85. DOI: 10.1038/s4157701902246
55. Wang Y., Zhao E., Zhang Z. et al. Association between Tim3 and Gal9 expression and gastric cancer prognosis. Oncol Rep 2018;40(4):2115–26. DOI: 10.3892/or.2018.6627
56. Gonçalves Silva I., Yasinska I.M., Sakhnevych S.S. et al. The TIM3galectin9 secretory pathway is involved in the immune escape of human acute myeloid leukemia cells. EBioMedicine 2017;22: 44–57. DOI: 10.1016/j.ebiom.2017.07.018
57. Li H., Wu K., Tao K. et al. TIM3/galectin9 signaling pathway mediates Tcell dysfunction and predicts poor prognosis in patients with hepatitis B virusassociated hepatocellular carcinoma. Hepatology 2012;56(4):1342–51. DOI: 10.1002/hep.25777
58. Cao E., Zang X., Ramagopal U.A. et al. T cell immunoglobulin mucin3 crystal structure reveals a galectin9independent ligandbinding surface. Immunity 2007;26(3):311–21. DOI: 10.1016/j.immuni.2007.01.016
59. Kang C.W., Dutta A., Chang L.Y. et al. Apoptosis of tumor infiltrating effector TIM3+CD8+ T cells in colon cancer. Sci Rep 2015;5:15659. DOI: 10.1038/srep15659
60. Kikushige Y., Shima T., Takayanagi S. et al. TIM3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell 2010;7(6):708–17. DOI: 10.1016/j.stem.2010.11.014
61. Kikushige Y., Miyamoto T. TIM3 as a novel therapeutic target for eradicating acute myelogenous leukemia stem cells. Int J Hematol 2013;98(6):627–33. DOI: 10.1007/s1218501314336
62. Asayama T., Tamura H., Ishibashi M. et al. Functional expression of TIM3 on blasts and clinical impact of its ligand galectin9 in myelodysplastic syndromes. Oncotarget 2017;8(51):88904–17. DOI: 10.18632/oncotarget.21492
63. Dama P., Tang M., Fulton N. et al. Gal9/TIM3 expression level is higher in AML patients who fail chemotherapy. J Immunother Cancer 2019;7(1):175. DOI: 10.1186/s4042501906113
64. Kong Y., Zhang J., Claxton D.F. et al. PD1(hi)TIM3(+) T cells associate with and predict leukemia relapse in AML patients post allogeneic stem cell transplantation. Blood Cancer J 2015;5(7):e330. DOI: 10.1038/bcj.2015.58
65. Gonçalves Silva I., Rüegg L., Gibbs B.F. et al. The immune receptor TIM3 acts as a trafficker in a TIM3/galectin9 autocrine loop in human myeloid leukemia cells. Oncoimmunology 2016;5(7):e1195535. DOI: 10.1080/2162402X.2016.1195535
66. Acharya N., SabatosPeyton C., Anderson A.C. TIM3 finds its place in the cancer immunotherapy landscape. J Immunother Cancer 2020;8(1):e000911. DOI: 10.1136/jitc20200091
67. Dardalhon V., Anderson A.C., Karman J. et al. TIM3/galectin9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly–6G+ myeloid cells. J Immunol 2010;185(3):1383– 92. DOI: 10.4049/jimmunol.0903275
68. Gao X., Zhu Y., Li G. et al. TIM3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS One 2012;7(2):e30676. DOI: 10.1371/journal.pone.0030676
69. Jones R.B., Ndhlovu L.C., Barbour J.D. et al. TIM3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV1 infection. J Exp Med 2008;205(12):2763–79. DOI: 10.1084/jem.20081398
70. Fourcade J., Sun Z., Benallaoua M. et al. Upregulation of TIM3 and PD1 expression is associated with tumor antigenspecific CD8+ T cell dysfunction in melanoma patients. J Exp Med 2010;207(10):2175–86. DOI: 10.1084/jem.20100637
71. Sakuishi K., Apetoh L., Sullivan J.M. et al. Targeting TIM3 and PD1 pathways to reverse T cell exhaustion and restore antitumor immunity. J Exp Med 2010;207(10):2187–94. DOI: 10.1084/jem.20100643
72. Yang Z.Z., Grote D.M., Ziesmer S.C. et al. IL12 upregulates TIM3 expression and induces T cell exhaustion in patients with follicular B cell nonHodgkin lymphoma. J Clin Invest 2012;122(4):1271–82. DOI: 10.1172/JCI59806
73. Liu J., Zhang S., Hu Y. et al. Targeting PD1 and TIM3 pathways to reverse CD8 Tcell exhaustion and enhance ex vivo Tcell responses to autologous dendritic/tumor vaccines. J Immunother 2016;39(4):171–80. DOI: 10.1097/CJI.0000000000000122
74. Borate U., Esteve J., Porkka K. et al. AntiTIM3 antibody MBG453 in combination with hypomethylating agents in patients with highrisk myelodysplastic syndrome and acute myeloid leukemia: a phase 1 study. Paper presented at: 25th EHA Congress. June 11–21, 2020 [abstract S185].
Review
For citations:
Morozova E.V., Tsvetkov N.Yu., Barabanshchikova M.V., Yurovskaya K.S., Moiseev I.S. New perspectives in the treatment of patients with intermediate-2 and high-risk myelodysplastic syndrome. Oncohematology. 2022;17(4):106-117. (In Russ.) https://doi.org/10.17650/1818-8346-2022-17-4-106-117