Preview

Oncohematology

Advanced search

Application of heteroduplex analysis for CALR mutation screening detection in patients with Ph-myeloproliferative neoplasms

https://doi.org/10.17650/1818-8346-2021-16-2-48-55

Abstract

Background. In accordance with the World health organization clinical guidelines, the analysis of somatic mutations in the CALR gene, as well as mutations in the JAK2 and MPL genes, are included in the list of criteria for the Ph-myeloproliferative neoplasms diagnosis.

More than 50 different mutation variants have been found in the CALR gene, among which the most frequent are a 52 bp deletion (c.1092_1143del), also called type 1, and a 5 bp insertion (c.1154_1155insTTGTC), also called type 2 (88 %).

The remaining 12 % are other type less frequent indels or combinations thereof.

It is most convenient to use sequencing methods to identify all possible variants of CALR mutations. It is also important to develop inexpensive screening test that can detect any mutations in the analyzed DNA fragment of CALR gene. This method can be heteroduplex analysis followed by electrophoresis on polyacrylamide gel (PAGE).

The objective: to develop and demonstrate the feasibility of using heteroduplex analysis with separation of the PCR product by electrophoresis on non-denaturing PAGE for the CALR exon 9 mutations detection as the screening test. Materials and methods. DNA samples of 13 CALR-positive patients with different phenotypic variants of Ph-myeloproliferative neoplasms were screened by heteroduplex analysis. For the most common variants of CALR mutations (c.1092_1143del and c.1154_1155insTTGTC), a threshold determination of the mutant allele presence was analyzed.

Nucleotide sequence of exon 9 fragment was determined using Sanger sequencing. Also, all 13 samples were analyzed using the pyrosequencing method to assess the allelic burden level.

Results. Heteroduplex analysis revealed mutations in exon 9 of the CALR gene in all 13 patients. The threshold determinations of the method in the case of the c.1154_1155insTTGTC and c.1092_1143del analysis are 6.25 % and 3.13 % of the mutant allele presence in the patient sample, respectively.

Conclusion. The proposed variant of the heteroduplex analysis with separation of the PCR product by electrophoresis on non-denaturing PAGE can be recommended for use as the preliminary screening test which is carried out before the confirming sequencing methods for the different indels (or combinations thereof) CALR mutations determine.

The presence of heteroduplexes indicates the presence of a mutation, even if the mutant product is not visualized (in case of small mutations).

About the Authors

T. N. Subbotina
Siberian Federal University; Federal Siberian Research and Clinical Center of the Federal Medical and Biological Agency of Russia
Russian Federation

Tat’yana Nikolaevna Subbotina

79 Svobodnyy Prospekt, Krasnoyarsk 660041

26 Kolomenskaya St., Krasnoyarsk 660037



D. V. Kurochkin
Siberian Federal University
Russian Federation

79 Svobodnyy Prospekt, Krasnoyarsk 660041



I. E. Maslyukova
Siberian Federal University
Russian Federation

79 Svobodnyy Prospekt, Krasnoyarsk 660041



A. S. Khazieva
Regional Clinical Hospital
Russian Federation

3а Partizana Zheleznyaka St., Krasnoyarsk 660022



E. V. Vasiliev
Regional Clinical Hospital
Russian Federation

3а Partizana Zheleznyaka St., Krasnoyarsk 660022



M. A. Mikhalev
City Clinical Hospital No. 7
Russian Federation

Build. 3, 4 Akademika Pavlova St., Krasnoyarsk 660003



E. A. Dunaeva
Central Research Institute of Epidemiology of the Federal Service for Surveillance on Customer Rights Protection and Human Wellbeing
Russian Federation

3a Novogireevskaya St., Moscow 111123



K. O. Mironov
Central Research Institute of Epidemiology of the Federal Service for Surveillance on Customer Rights Protection and Human Wellbeing
Russian Federation

3a Novogireevskaya St., Moscow 111123



References

1. Melikyan A.L., Subortseva I.N. Biology of myeloproliferative malignancies. Klinicheskaya onkogematologiya = Clinical Oncohematology 2016;9(3):314–25. (In Russ.). DOI: 10.21320/2500-2139-2016-9-3-314-325.

2. Baxter E.J., Scott L.M., Campbell P.J. et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005;365(9464): 1054–61. DOI: 10.1016/S0140-6736(05)71142-9.

3. Scott L.M., Tong W., Levine R.L. et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007;356(5):459–68. DOI: 10.1056/NEJMoa065202.

4. Pikman Y., Lee B.H., Mercher T. et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006;3(7):e270. DOI: 10.1371/journal.pmed.0030270.

5. Vardiman J.W., Thiele J., Arber D.A. et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009;114(5):937–51. DOI: 10.1182/blood-2009-03-209262.

6. Klampfl T., Gisslinger H., Harutyunyan A.S. et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013;369(25):2379–90. DOI: 10.1056/NEJMoa1311347.

7. Nangalia J., Massie C.E., Baxter E.J. et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013;369(25):2391–405. DOI: 10.1056/NEJMoa1312542.

8. Arber D.A., Orazi A., Hasserjian R. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127(20):2391–405. DOI: 10.1182/blood-2016-03-643544.

9. Lippert E., Mansier O., Migeon M. et al. Clinical and biological characterization of patients with low (0.1–2 %) JAK2V617F allele burden at diagnosis. Haematologica 2014;99(7): 98–101. DOI: 10.3324/haematol.2014.107656.

10. Nussenzveig R.H., Pham H.T., Perkins S.L. et al. Increased frequency of coexisting JAK2 exon-12 or MPL exon-10 mutations in patients with low JAK2V617F allelic burden. Leuk Lymphoma 2015;57(6):1429–35. DOI: 10.3109/10428194.2015.1091932.

11. Chauveau A., Nibourel O., Tondeur S. et al. Absence of CALR mutations in JAK2-negative polycythemia. Haematologica 2017;102(1):e15–6. DOI: 10.3324/haematol.2016.154799.

12. Mironov K.O., Dunaeva E.A., Dribnokhodova O.P. et al. Experience of using genetic analysis systems based on pyrosequencing technology. Spravochnik zaveduyushchego KDL = CDL Head Handbook 2016;(5):33‒43. (In Russ.).

13. Subbotina T.N., Kharsekina A.E., Dunaeva E.A. et al. Heteroduplex analysis and pyrosequencing in the diagnostic algorithm of polycythemia vera associated with JAK2 exon 12 mutations. Laboratornaya sluzhba = Laboratory Service 2017;6(1):29–33. (In Russ.). DOI: 10.17116/labs20176129-33.

14. Rozovski U., Verstovsek S., Manshouri T. et al. An accurate, simple prognostic model consisting of age, JAK2, CALR, and MPL mutation status for patients with primary myelofibrosis. Haematologica 2017;102(1):79–84. DOI: 10.3324/haematol.2016.149765.

15. Sambrook J., Russell D. Molecular cloning: a laboratory manual. 3rd edn. Cold Spring Harbor Laboratory Press, 2001.

16. Tefferi A., Lasho T.L., Finke C.M. et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia 2014;28(7):1472–7. DOI: 10.1038/leu.2014.3.

17.


Review

For citations:


Subbotina T.N., Kurochkin D.V., Maslyukova I.E., Khazieva A.S., Vasiliev E.V., Mikhalev M.A., Dunaeva E.A., Mironov K.O. Application of heteroduplex analysis for CALR mutation screening detection in patients with Ph-myeloproliferative neoplasms. Oncohematology. 2021;16(2):48-55. (In Russ.) https://doi.org/10.17650/1818-8346-2021-16-2-48-55

Views: 10091


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)