Using the Minor Variant Finder software to identify and quantify the allelic burden level of somatic mutations in oncohematologic diseases
https://doi.org/10.17650/1818-8346-2020-15-2-85-91
Abstract
Background. There are problems related to both quantitative assessment of an allele burden level of a mutant gene and interpretation of results in DNA samples with the burden level of the mutant allele less than 15–20 %, when using Sanger sequencing for analyzing somatic mutations. Applied Biosystems (USA) has developed new software Minor Variant Finder, which allows determining mutations with the allele burden level from 5 %.
The objective: to determine the allele burden level and identification of minor variants of somatic mutations in the ASXL1, JAK2 genes and BCR-ABL oncogene using Minor Variant Finder software in patients with myeloproliferative neoplasms.
Materials and methods. The level of mutant allele burden for 15 patients with myeloproliferative neoplasms was determined by the identified mutations using the Minor Variant Finder software, after analysis of point somatic mutations in the ASXL1, JAK2 genes and BCR-ABL oncogene by Sanger sequencing.
Results. The allele burden level in all 5 ASXL1-positive samples and BCR-ABL-positive sample was determined as higher than 20 % using the Minor Variant Finder software. The allele burden level in 2 cases was higher than 20 % and in 7 cases lower than 20 %, when we analyzed 9 JAK2-positive samples.
Conclusion. Minor Variant Finder software can be used to estimate the allele burden level and to identify minor variants of somatic mutations in the ASXL, JAK2 and BCR-ABL genes.
About the Authors
T. N. SubbotinaRussian Federation
79 Svobodnyy Prospekt, Krasnoyarsk 660041,
26 Kolomenskaya St., Krasnoyarsk 660037
I. E. Maslyukova
Russian Federation
79 Svobodnyy Prospekt, Krasnoyarsk 660041
A. A. Faleeva
Russian Federation
79 Svobodnyy Prospekt, Krasnoyarsk 660041,
26 Kolomenskaya St., Krasnoyarsk 660037
P. A. Nikolaeva
Russian Federation
79 Svobodnyy Prospekt, Krasnoyarsk 660041,
26 Kolomenskaya St., Krasnoyarsk 660037
A. S. Khazieva
Russian Federation
3a Partizana Zheleznyaka St., Krasnoyarsk 660022
E. A. Dunaeva
Russian Federation
3a Novogireevskaya St., Moscow 111123
K. O. Mironov
Russian Federation
3a Novogireevskaya St., Moscow 111123
L. B. Polushkina
Russian Federation
162-Sovetskaya St., Saint Petersburg 191024
I. S. Martynkevich
Russian Federation
162-Sovetskaya St., Saint Petersburg 191024
S. V. Vereshchagina
Russian Federation
26 Kolomenskaya St., Krasnoyarsk 660037
B. V. Barankin
Russian Federation
26 Kolomenskaya St., Krasnoyarsk 660037
References
1. Vannucchi A.M., Guglielmelli P. Molecular pathophysiology of Philadelphia – negative myeloproliferative disorders: beyond JAK2 and MPL mutations. Haematologica 2008;93(7):972–6. DOI: 10.3324/haematol.13266.
2. Ikonnikova A.Yu., Yatsenko Yu.E., Kremenetskaya O.S. et al. Detection of BCR-ABL gene mutations in chronic myeloid leukemia using biochips. Molekulyarnaya biologiya = Molecular Biology 2016;50(3):412–6. (In Russ.). DOI: 10.7868/S0026898416020087.
3. Ogino S., Kawasaki T., Brahmandam M. et al. Sensitive sequencing method for KRAS mutation detection by pyrosequencing. J Mol Diagn 2005;7(3):413–21. DOI: 10.1016/S1525-1578(10)60571-5.
4. Schreiber E.H., Leong H., Schneider S.J. Minor Variant Finder: New software for detecting somatic mutations at low level in Sanger sequencing traces. Am Assoc Cancer Res 2016;76(14):5269. DOI: 10.1158/1538-7445.AM2016-5269.
5. Zhuo Z., Lamont S.J., Abasht B. RNA-Seq Analyses identify frequent allele specific expression and no evidence of genomic imprinting in specific embryonic tissues of chicken. Sci Rep 2017;7(1):11944. DOI: 10.1038/s41598-017-12179-9.
6. Bessis D., Plaisancie J., Gaston V., Bieth E. Fibroblast growth factor receptor 3 epidermal naevus syndrome with urothelial mosaicism for the activating p.Ser249Cys FGFR3 mutation. Acta Derm Venereol 2017;97(3):402–3. DOI: 10.2340/00015555-2554.
7. Chen J., Hong Z., Zhao C. et al. Associations between polymorphisms of the PDLIM4 gene and susceptibility to osteoporotic fracture in an elderly population of Han Chinese. Biosci Rep 2019;39(1):20181505. DOI: 10.1042/BSR20181505.
8. Beretti F., Bertoni L., Farnetani F. et al. Melanoma types by in vivo reflectance confocal microscopy correlated with protein and molecular genetic alterations: a pilot study. Exp Dermatol 2019;28(3):254–60. DOI: 10.1111/exd.13877.
9. Jackson S., Gerstner A., Varma K. A capillary electrophoresis-sequencing based screening solution for identifying and quantifying hotspot mutations in solid tumors. Eur J Cancer 2016;61(1):156–7. DOI: 10.1016/S0959-8049(16)61553-8.
10. Melikyan A.L., Kovrigina A.M., Subortseva I.N. et al. National сlinical recommendations for diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis). Gematologiya i transfuziologiya = Russian Journal of Hematology and Transfusiology 2018;63(3):275–315. (In Russ.). DOI: 10.25837/HAT.2019.51.88.001.
11. Vannucchi A.M., Lasho T.L., Guglielmelli P. et al. Mutations and prognosis in primary myelofibrosis. Leukemia 2013;27(9):1861–9. DOI: 10.1038/leu.2013.119.
12. Sorigué M., Ribera J.M., García O. et al. Highly variable mutational profile of ASXL1 in myelofibrosis. Eur J Haematol 2016;97(4):331–6. DOI: 10.1111/ejh.12731.
13. Catalogue of somatic mutations in cancer. Available by http://cancer.sanger.ac.uk/cosmic.
14. Soverini S., Abruzzese E., Bocchia M. et al. Next-generation sequencing for BCR-ABL1 kinase domain mutation testing in patients with chronic myeloid leukemia: a position paper. J Hematol Oncol 2019;12(1):131. DOI: 10.1186/s13045-019-0815-5.
15. Larsen T.S., Christensen J.H., Hasselbalch H.C. et al. The JAK2 V617F mutation involves B- and T-lymphocyte lineages in a subgroup of patients with Philadelphia-chromosome negative chronic myeloproliferative disorders. Br J Haematol 2007;136(5):745–51. DOI: 10.1111/j.1365-2141.2007.06497.x.
16. Dunaeva E.A., Mironov K.O., Dribnokhodova O.P. et al. The quantitative testing of V617F mutation in gene JAK2 using pyrosequencing technique. Klinicheskaya laboratornaya diagnostika = Clinical Laboratory Diagnostics 2014;59(11):60–3. (In Russ.).
17. Wu Z., Zhang Y., Zhang X. et al. A multiplex snapback primer system for the enrichment and detection of JAK2 V617F and MPL W515L/K mutations in Philadelphia-negative myeloproliferative neoplasms. Biomed Res Int 2014;2014:458457. DOI: 10.1155/2014/458457.
Review
For citations:
Subbotina T.N., Maslyukova I.E., Faleeva A.A., Nikolaeva P.A., Khazieva A.S., Dunaeva E.A., Mironov K.O., Polushkina L.B., Martynkevich I.S., Vereshchagina S.V., Barankin B.V. Using the Minor Variant Finder software to identify and quantify the allelic burden level of somatic mutations in oncohematologic diseases. Oncohematology. 2020;15(2):85-91. (In Russ.) https://doi.org/10.17650/1818-8346-2020-15-2-85-91