Preview

Oncohematology

Advanced search

Evaluation of the possibilities of shear wave elastography for differentiation of lymphomatous and reactive changes of superficial lymph nodes

https://doi.org/10.17650/1818-8346-2020-15-1-59-64

Abstract

Objective: to evaluate the possibilities of ultrasound elastography for differentiation of reactive and lymphomatous superficial lymph nodes (LN).

Materials and methods. The prospective study included 138 patients with enlarged superficial LN. Based on a previous histological examination, patients were divided into two groups: 1st group (n = 108) – patients with non-Hodgkin’s lymphomas and Hodgkin’s lymphoma; 2nd (n = 30) – patients with reactive (inflammatory) changes in superficial LN. All patients underwent ultrasound elastography of the enlarged LN using ARFI technology.

Results. According to the results of ultrasound elastography, the average, minimum, and maximum shear wave velocities for enlarged LN in lymphoma (1st group) were 2.616 ± 0.684; 1.980 ± 0.557 and 3.351 ± 0.987 m / s, respectively; for LN with reactive changes (2nd group) – 1.704 ± 0.223; 1.414 ± 0.209 and 2.027 ± 0.261 m / s, respectively. Thus, the average, minimum, and maximum values of shear wave velocities significantly different between the groups (p ˂0.001). The cut off values of the average shear wave velocity in the differential diagnosis of lymphoma and hyperplasia are determined at the level of 2.05 m / s, with a sensitivity of 88.5 %, specificity of 100 %, and AUC of 0.942 (p ˂0.001).

Conclusion. Ultrasound elastography demonstrated statistically significant differences in shear wave velocity in the enlarged superficial LN in lymphoma and in inflammatory processes that can be used as a preliminary non-invasive differential diagnosis of enlarged superficial LN in these conditions. 

About the Authors

E. V. Kovaleva
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


T. Yu. Danzanova
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


G. T. Sinyukova
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


E. A. Gudilina
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


P. I. Lepedatu
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


G. F. Allahverdieva
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


P. A. Zeynalova
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


V. B. Larionova
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


A. A. Semenova
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


References

1. Torre L.A., Bray F., Siegel R.L. et al. Global cancer statistics. 2012. Cancer J Clin 2015;65(2):87–108. DOI: 10.3322/caac.21262.

2. Niu X., Jiang W., Zhang X. et al. Comparison of contrast­enhanced ultrasound and Positron Emission Tomography/Computed Tomography (PET/CT) in lymphoma. Med Sci Monit 2018;24:5558–65. DOI: 10.12659/MSM.908849.

3. Avivi I., Zilberlicht A., Dann E.J. et al. Strikingly high false positivity of surveillance FDG PET­CT scanning among patients with diffuse large cell lymphoma in the rituximab era. Am J Hematol 2013;88(5):400–5. DOI: 10.1002/ajh.23423.

4. Querellou S., Valette F., Bodet­Milin C. et al. FDG PET­CT predicts outcome in patients with aggressive non­Hodgkin’s lymphoma and Hodgkin’s disease. Ann Hematol 2006;85(11):759–67. DOI: 10.1007/s00277­006­0151­z.

5. Helman J., SedláIková Z., Fürst T. et al. The role of ultrasound and shear­wave elastography in evaluation of cervical lymph nodes. Hindawi BioMed Res Int 2019;4318251. DOI:10.1155/2019/4318251.

6. Kovaleva E.V., Danzanova T.Yu., Sinyukova G.T. et al. Successful use of ultrasound elastography in the preliminary intermediate evaluation of therapeutic response in patients with Hodgkin’s lymphoma. Onkogematologiya = Oncohematology 2019;14(4):40–6. (In Russ.).

7. Mitkov V.V., Mitkova M.D. Ultrasound shear waveelastography. Ul’trazvukovaya i funktsional’naya diagnostika = Ultrasound and Functional Diagnostics 2015;(2):94–108. (In Russ.).

8. D’Onofrio M., Crosara S., De Robertis R. et al. Acoustic radiation force impulse of the liver. World J Gastroenterol 2013;19(30):4841–9. DOI: 10.3748/wjg.v19.i30.4841.

9. Zhang P., Zhang L., Zheng S. et al. Acoustic radiation force impulse imaging for the differentiation of benign and malignant lymph nodes: a systematic review and meta­analysis. PLoS ONE 2016;11(11):e0166716. DOI: 10.1371/journal.pone.0166716.

10. Alymov Yu.V., Sholokhov V.N., Podvyaznikov S.O. et al. Up­to­date opportunities of cervical lymph nodes ultrasound investigation in patients, suffering from oral cavity cancer. Opukholy golovy i shei = Head and Neck Tumors 2016;1(6):33–8. (In Russ.).

11. Kovaleva E.V., Danzanova T.Yu., Sinyukova G.T. et al. Multiparametric ultrasound diagnosis of metastatic and lymphoproliferative changes in lymph nodes in primarymultiple malignant tumors, including breast cancer and lymphoma. Zlokachestvennye opukholi = Malignant Tumours 2018;8(4):37–44. (In Russ.).

12. Săftoiu A., Gilja O.H., Sidhu P.S. et al. The EFSUMB Guidelines and recommendations for the clinical practice of elastography in non­hepatic applications: update 2018. Ultraschall Med 2019;40(4):425–53. DOI: 10.1055/a­0838­9937.

13. Zhang F., Zhao X., Ji X. et al. Diagnostic value of acoustic radiation force impulse imaging for assessing superficial lymph nodes. Medicine (Baltimore) 2017;96(43):e8125. DOI: 10.1097/MD.0000000000008125.

14. Teng D.K., Wang H., Lin Y.Q. et al. Value of ultrasound elastography in assessment of enlarged cervical lymph nodes. Asian Pac J Cancer Prev 2012;13(5):2081–5. DOI: 10.7314/APJCP.2012.13.5.2081.

15. Fujiwara T., Tomokuni J., Iwanaga K. et al. Acoustic radiation force impulse imaging for reactive and malignant/metastatic cervical lymph nodes. Ultrasound Med Biol 2013;39(7):1178–83. DOI: 10.1016/j.ultrasmedbio.2013.02.001.

16. Liu L.J., Xu X.H., Yang Y.G. et al. Value of virtual touch tissue quantification of acoustic radiation force impulse elastography in differential diagnosis of cervical lymph nodes. J Clin Ultrasound Med 2015;17:379–81.

17. Chen S., Lin X., Chen X. et al. Noninvasive evaluation of benign and malignant superficial lymph nodes by virtual touch tissue quantification: a pilot Study. J Ultrasound Med 2016;35(3):571–5. DOI: 10.7863/ultra.15.05053.

18. Chae S.Y., Jung H.N., Ryoo I. et al. Differentiating cervical metastatic lymphadenopathy and lymphoma by shear wave elastography. Scientific reports 2019;9(1):12396. DOI: 10.1038/s41598­019­48705­0.


Review

For citations:


Kovaleva E.V., Danzanova T.Yu., Sinyukova G.T., Gudilina E.A., Lepedatu P.I., Allahverdieva G.F., Zeynalova P.A., Larionova V.B., Semenova A.A. Evaluation of the possibilities of shear wave elastography for differentiation of lymphomatous and reactive changes of superficial lymph nodes. Oncohematology. 2020;15(1):59-64. (In Russ.) https://doi.org/10.17650/1818-8346-2020-15-1-59-64

Views: 9472


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)