Preview

Oncohematology

Advanced search

Minimal residual disease in plasma cell (multiple) myeloma: flow cytometric approaches

https://doi.org/10.17650/1818-8346-2020-15-1-40-50

Abstract

The minimum residual disease (MRD) for hematopoietic and lymphoid systems tumors is an important component of patient examination during therapy. The MRD detection is performed to evaluate the effect of therapy and risk stratification during chemotherapy (acute leukemia) or at the end of it (peripheral B-cell lymphomas). The main laboratory methods for MRD assessing are molecular (polymerase chain reaction) and immunological (multi-parameter flow cytometry (FC)) methods. Immunological evaluation of MRD is the standard of clinical protocols for the treatment of childhood acute lymphoblastic leukemia during induction therapy. In the case of acute leukemia in adults, MRD assessment is usually performed at the end of the consolidation course. Clinically significant and practically standardized is the immunological assessment of MRD in B-cell chronic lymphocytic leukemia.

In multiple myeloma (in World Health Organization (2016) classification – plasma cell myeloma (PCM)), work is also underway to standardize protocols and unify approaches to MRD detection. With the introduction of new drugs and treatment regimens, as well as transplantation clinical outcome of patients significantly improved and MRD value is considered as a prognostic factor. To date, the use of the MRD value as a biomarker of treatment response in PCM has been approved by the US Food and Drug Administration.

With the accumulation of our knowledge regarding the MRD and to establish the clinical significance of the FC in PCM, International Multiple Myeloma Study Group (IMWG) in 2011 was added the following definition to the traditional criteria of PCM complete remission: “Immunophenotypic complete remission” – the immunophenotypically absence of aberrant clonal plasma cells in the bone marrow when analyzing at least 1 million myelocaryocytes using a multiparameter FC (4 or more parameters).

This article discusses the evolution of immunological approaches using a multi-parameter FC to detect MRD in patients with PCM in accordance with various existing protocols, features of the preanalytical stage and general rules for FC detection of MRD in PCM. 

About the Authors

L. Yu. Grivtsova
A. F. Tsyb Medical Radiological Research Center – branch of the National Medical Research Radiological Center, Ministry of Health of Russia
Russian Federation
4 Koroleva St., Obninsk 249031


V. V. Lunin
P.A. Hertzen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Center, Ministry of Health of Russia
Russian Federation
3 2nd Botkinskiy Proezd, Moscow 125284


A. A. Semenova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


V. B. Larionova
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


G. S. Tumyan
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation
24 Kashirskoe Shosse, Moscow 115478


References

1. Dworzak M.J., Froshl G., Printz D.T. et al. Prognostic significance and modalities of flow cytometric minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2002;99(6):1952–8. DOI: 10.1182/blood.v99.6.1952.

2. Borowitz M.J., Devidas M., Hunger S.P. et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Grop study. Blood 2008;111(12):5477–85. DOI: 10.1182/blood­2008­01­132837.

3. Basso G., Veltroni M., Valsecchi M.G. et al. Risk of relapse of chaildhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol 2009;27(31):5168–74. DOI: 10.1200/JCO.2008.20.8934.

4. Coustan­Smith E., Ribeiro R.C., Stow P. et al. A simplified flow cytometric assay identifies children with acute lymphoblastic leukemia who have a superior clinical outcome. Blood 2006;108(1):97–102. DOI: 10.1182/blood­2006­01­0066.

5. Grivtsova L.Y. Popa A.V., Serebryakova I.N. et al. to further standardize the determination of residual blast cells in the bone marrow of children with B­linear acute lymphoblastic leukemia on the 15th day of induction therapy. Immunologiya gemopoeza = Hematopoiesis Immunology 2011;8(1):35–54.(In Russ.).

6. Beznos O.A., Grivtsova L.Yu., Popa A.V. et al. Determination of minimal residual disease in B­linear acute lymphoblastic leukemia using EuroFlow approaches. Klinicheskaya onkogematoloiya. Fundamental’nye issledovaniya i klinicheskaya praktika = Clinical Oncohematology. Basic Research and Clinical Practice 2017;10(2):158–68. (In Russ.).

7. Chernysheva O.A., Grivtsova L.Yu., Serebryakova I.N. et al. Diagnosis of acute lymphoblastic leukemia from T­linear progenitors and approaches to monitoring minimal residual disease. Klinicheskaya onkogematoloiya. Fundamental’nye issledovaniya i klinicheskaya praktika = Clinical Oncohematology. Basic Research and Clinical Practice 2019;12(1):79–85.(In Russ.).

8. Tupitsyna D.N., Kupryshina N.A., Grivtsova L.Yu. Criteria for minimal residual disease of B­cell chronic lymphocytic leukemia in the diagnosis of indolent lymphomas. Vestnik gematologii = Bulletin of Hematology 2011;7(1):52.(In Russ.).

9. Rawstron A.C., Villmor N., Ritgen M. et al. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukemia. Leukemia 2007;21(5):956–64. DOI: 10.1038/sj.leu.2404584.

10. Kupryshina N.A., Tupitsyn N.N. Flow cytometry in oncohematology. Part II. Fundamentals and innovations in the diagnosis of chronic lymphocytic leukemia. Klinicheskaya onkogematoloiya. Fundamental’nye issledovaniya i klinicheskaya praktika = Clinical Oncohematology. Basic Research and Clinical Practice 2012;5(4):349–54. (In Russ.).

11. Rawstron A.C., Davies F.E., Das Gupta R. et al. Flow cytometric disease monitoring in multiple myeloma: The relationship between normal and neoplastic plasma cells predicts outcome after transplantation. Blood 2002;100(9):3095–100. DOI: 10.1182/blood­2001­12­0297.

12. San Miguel J.F., Almeida J., Mateo G. et al. Immunophenotypic evaluation of the plasma cell compartment in multiple myeloma: a tool for comparing the efficacy of different treatment strategies and predicting outcome. Blood 2002;99(5):1853–6. DOI: 10.1182/blood.v99.5.1853.

13. Mateo G., Montalban M.A, Vidriales M.B. et al. Prognostic value of immunophenotyping in multiple myeloma: a study by the PETHEMA/ GEM cooperative study groups on patients uniformly treated with high­dose therapy. J Clin Oncol 2008;26(16):2737–44. DOI: 10.1200/JCO.2007.15.4120.

14. Rawstron A.C., Orfao A., Beksac M. et al. Report of the European myeloma network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 2008;93(3):431–8. DOI: 10.3324/haematol.11080.

15. Paiva B., Almeida J., Perez­Andres M. et al. Utility of flow cytometry immunophenotyping in multiple myeloma and other clonal plasma cell­related disorders. Cytometry B Clin Cytom 2010;78(4):239–52. DOI: 10.1002/cyto.b.20512.

16. Paiva B., van Dongen J.J., Orfao A. New criteria for response assessment: role of minimal residual disease in multiple myeloma. Blood 2015;125:3059–68. DOI: 10.1182/blood­2014­11­568907.

17. Flores­Montero J., de Tute R., Paiva B. et al. Immunophenotype of normal vs. myeloma plasma cells: toward antibody panel specifications for MRD detection in multiple myeloma. Cytometry B Clin Cytom 2015;90(1):61–72. DOI: 10.1002/cyto.b.21265.

18. Galtseva I.V., Mendeleev L.P., Davydova Yu.O. et al. Investigation of minimal residual disease using multicolor flow cytofluorimetry in patients with multiple myeloma after autologous hematopoietic stem cell transplantation. Onkogematologiya = Oncohematology 2017;12(2):62–9. (In Russ.).

19. Pedreira C.E., Costa E.S., Lecrevisse Q. et al. Overview of clinical flow cytometry data analysis: recent advances and future challenges. Trends Biotechnol 2013;31(7):415–25. DOI: 10.1016/j.tibtech.2013.04.008.

20. Rawstron A.C., Child J.A., de Tute R.M. et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study. J Clin Oncol 2013;31(34):2540–7. DOI: 10.1200/JCO.2012.46.2119.

21. Mathis S., Chapuis N., Borgeot J. et al. Comparison of cross­platform flow cytometry minimal residual disease evaluation in multiple myeloma using a common antibody combination and analysis strategy. Cytometry B Clin Cytom 2015;88(2):101–9. DOI: 10.1002/cyto.b.21200.

22. Flanders A., Stetler­Stevenson M., Landgren O. Minimal residual disease testing in multiple myeloma by flow cytometry: major heterogeneity. Blood 2013;122(6):1088–9. DOI: 10.1182/blood­2013­05­506170.

23. Loken M.R., Chu S.C., Fritsche W. et al. Normalization of bone marrow aspirates for hemodilution in flow cytometric analyses. Cytometry B Clin Cytom 2009;76(1):27–36. DOI: 10.1002/cyto.b.20429.

24. Grivtsova L.Yu., Tupitsyn N.N. Immunological evaluation of bone marrow hemodilution in laboratory studies(based on the test M. Loken). Meditsinskiy alfavit = Medical Alphabet 2015;4(18):67–70. (In Russ.).

25. Anderson K.C., Bates M.P., Slaughenhoupt B.L. et al. Expression of human B cell­associated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood 1984;63(6):1424–33.

26. San Miguel J.F., Caballero M.D., Gonzalez M. et al. Immunological phenotype of neoplasms involving the B cell in the last step of differentiation. Br J Haematol 1986;62:75–83.

27. Deaglio S., Mehta K., Malavasi F. Human CD38: a(r)evolutionary story of enzymes and receptors. Leuk Res 2001;25(1):1–12. DOI: 10.1016/s0145­2126(00)00093­x.

28. Campana D., Suzuki T., Todisco E. et al CD38 in hematopoiesis. Chem Immunol 2000;75:169–88. DOI: 10.1159/000058768.

29. Braylan R.C. Impact of flow cytometry on the diagnosis and characterization of lymphomas, chronic lymphoproliferative disorders and plasma cell neoplasias. Cytometry A 2004;58:57–61. DOI: 10.1002/cyto.a.10101.

30. Krejcik J., Casneuf T., Nijhof I.S. et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T­cell expansion, and skews T­cell repertoire in multiple myeloma. Blood 2016;128(3):384–94. DOI: 10.1182/blood­2015­12­687749.

31. Crowell P.D., Goldstein A.S. Functional evidence that progenitor cells near sites of inflammationare precursors for aggressive prostate cancer. Mol Cell Oncol 2017;4(2):e1279723. DOI:10.1080/23723556.2017.1279723.

32. Kotlikoff M.I., Kannan M.S., Solway J. et al. Methodologic advancements in the study of airway smooth muscle. J Allergy Clin Immunol 2004;114(suppl 2):S18–31. DOI: 10.1016/j.jaci.2004.04.040.

33. Horenstein A.L., Sizzano F., Lusso R. et al. CD38 and CD157 ectoenzymes mark cell subsets in the human corneal limbus. Mol Med 2009;15(3–4):76–84. DOI: 10.2119/molmed.2008.00108.

34. Quijano S., Lopez A., Rasillo A. et al. Association between the proliferative rate of neoplastic B cells, their maturationstage, and underlying cytogenetic abnormalities in B­cellchronic lymphoproliferative disorders: Analysis of a series of 432 patients. Blood 2008;111(10): 5130–41. DOI: 10.1002/cyto.b.20547.

35. Perez­Andres M., Paiva B., Nieto W.G. et al. Human peripheral blood B­cell compartments: a crossroad in B­cell traffic. Cytometry B Clin Cytom 2010;78(1):47–60. DOI: 10.1002/cyto.b.20547.

36. Terstappen L.W., Johnsen S., SegersNolten I.M., Loken M.R. Identification and characterization of plasma cells in normal human bone marrow by highresolution flow cytometry. Blood 1990;76(9):1739–47.

37. Orfao A., Garcia­Sanz R., LopezBerges M.C. et al. A new method for the analysis of plasma cell DNA content in multiple myeloma samples using a CD38/propidium iodide double staining technique. Cytometry1994; 17(4):332–9 DOI: 10.1002/cyto.990170409.

38. Wijdenes J., Vooijs W.C., Clement C. et al. A plasmocyte selective monoclonal antibody (B­B4) recognizes syndecan­1. Br J Haematol 1996;94(2):318–23. DOI: 10.1046/j.1365­2141.1996.d011811.x.

39. Jourdan M., Ferlin M., Legouffe E. et al. The myeloma cell antigen syndecan­1 is lost by apoptotic myeloma cells. Br J Haematol 1998;100(4):637–46. DOI: 10.1046/j.1365­2141.1998.00623.x.

40. San Antonio J.D., Karnovsky M.J., Gay S. et al. Interactions of syndecan­1 and heparin with human collagens. Glycobiology 1994;4(3):327–32. DOI: 10.1093/glycob/4.3.327.

41. Yang Y., Borset M., Langford J.K. et al. Heparan sulfate regulates targeting of syndecan­1 to a functional domain on the cell surface. J Biol Chem 2003;278(15):12888–93. DOI: 10.1074/jbc.M209440200.

42. Reid S., Yang S., Brown R. et al. Characterization and relevance of CD138 negative plasma cells in plasma cell myeloma. Int J Lab Hematol 2010;32(6 Pt 1):190–6. DOI: 10.1111/j.1751­553X.2010.01222.x.

43. Wu D., Guo X., Su J. et al. CD138­negative myeloma cells regulate mechanical properties of bone marrow stromal cells through SDF­1/CXCR4/ AKT signaling pathway. Biochimica et Biophysica Acta 2015;1853(2):338–47. DOI: 10.1016/j.bbamcr.2014.11.019.

44. Kostyukova M.N. The value of the IL­6 receptor on tumor cells of multiple myeloma. Thesis ...of candidate of biological sciences. Moscow, 2014. 145 p.(In Russ.).

45. Cannizzo E., Bellio E., Sohani A.R. et al. Multiparameter immunophenotyping by flow cytometry in multiple myeloma; the diagnostic utility of defining ranges of normal antigenic expression in comparison to histology. Cytometry B Clin Cytom 2010;78(4):231–8. DOI: 10.1002/cyto.b.20517.

46. Liu D., Lin P., Hu Y. et al. Immunophenotypic heterogeneity of normal plasma cells: comparison with minimal residual plasma cell myeloma. J Clin Pathol 2012;65(9):823–9. DOI: 10.1136/jclinpath­2012­200881.

47. Tembhare P.R., Yuan C.M., Venzon D. et al. Flow cytometric differentiation of abnormal and normal plasma cells in the bone marrow in patients with multiple myeloma and its precursor diseases. Leuk Res 2014;38(3):371–6. DOI: 10.1016/j.leukres.2013.12.007.

48. Jung J., Choe J., Li L. et al. Regulation of CD27 expression in the course of germinal center B cell differentiation: the pivotal role of IL­10. Eur J Immunol 2000;30(8):2437–43. DOI: 10.1002/1521­4141(2000)30: 8<2437::AID­IMMU2437>3.0.CO;2­M.

49. Sims G.P., Ettinger R., Shirota Y. et al. Identification and characterization of circulating human transitional B cells. Blood 2005;105(11):4390–8. DOI: 10.1182/blood­2004­11­4284.

50. Boomer J.S., Green J.M. An еnigmatic tail of CD28 signaling. Cold Spring Harb Perspect Biol 2010;2(8). DOI: 10.1101/cshperspect.a002436.

51. Nair J.R., Carlson L.M., Koorella C. et al. CD28 expressed on malignant plasma cells induces a prosurvival and immunosuppressive microenvironment. J Immunol 2011;187(3):1243–53. DOI: 10.4049/jimmunol.1100016.

52. Pellat­Deceunynck C., Bataille R., Robillard N. et al. Expression of CD28 and CD40 in human myeloma cells: a comparative study with normal plasma cells. Blood 1994;84(8):2597–603.

53. Zhang X.G., Olive D., Devos J. et al. Malignant plasma cell lines express a functional CD28 molecule. Leukemia 1998;12(4):610–8. DOI: 10.1038/sj. leu.240097.1.

54. Rozanski C.H., Utley A., Carlson L.M. et al. CD28 promotes plasma cell survival, sustained antibody responses, and BLIMP­1 upregulation through its distal PYAP proline motif. J Immunol 2015;194(10):4717–28. DOI: 10.4049/jimmunol.1402260.

55. Van Dongen J.J., Lhermitte L., Böttcher S. et al. EuroFlow Consortium (EU­FP6, LSHB­CT­2006­018708). EuroFlow antibody panels for standardized N­dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012;26(9):1908–75. DOI: 10.1038/leu.2012.120.

56. Flores­Montero J., Sanoja­Flores L., Paiva B. et al. Next Generation Flow for highly sensitive and standardized detectionof minimal residual disease in multiple myeloma. Leukemia 2017;31(10):2094–103. DOI: 10.1038/leu.2017.29.

57. Alapat D., Coviello­Malle J., Owens R. et al. Diagnostic usefulness and prognostic impact of CD200 expression in lymphoid malignancies and plasma cell myeloma. Am J Clin Pathol 2012;137(1):93–100. DOI: 10.1309/AJCP59UORCYZEVQO.


Review

For citations:


Grivtsova L.Yu., Lunin V.V., Semenova A.A., Larionova V.B., Tumyan G.S. Minimal residual disease in plasma cell (multiple) myeloma: flow cytometric approaches. Oncohematology. 2020;15(1):40-50. (In Russ.) https://doi.org/10.17650/1818-8346-2020-15-1-40-50

Views: 10748


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)