Preview

Онкогематология

Расширенный поиск

Лечение острых миелоидных лейкозов у детей: современный взгляд на проблему

https://doi.org/10.17650/1818-8346-2020-15-1-10-27

Аннотация

Результаты лечения острых миелоидных лейкозов (ОМЛ) у детей остаются неудовлетворительными. Современные программы терапии с включением трансплантации гемопоэтических стволовых клеток позволяют получить показатели 5-летней общей выживаемости в 65 % случаев у первичных больных. При развитии рецидивов или рефрактерном течении ОМЛ 5-летняя общая выживаемость больных составляет около 35 %.

В настоящей статье представлены возможности полихимиотерапии и трансплантации гемопоэтических стволовых клеток в лечении ОМЛ. Приведены результаты использования эпигенетической, иммунной и клеточной терапии при ОМЛ у детей. Отдельное внимание уделено таргетным препаратам, которые только начинают применяться в комплексной терапии ОМЛ. 

Об авторах

Ф. А. Махачева
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России
Россия
115478 Москва, Каширское шоссе, 23


Т. Т. Валиев
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» Минздрава России
Россия

Тимур Теймуразович Валиев 

115478 Москва, Каширское шоссе, 23



Список литературы

1. Менткевич Г.Л., Маякова С.А. Лейкозы у детей. М.: Практическая медицина, 2009. 253 с.

2. Becktell K., Houser K., Burke M.J. Epigenetic therapy in a patient with down syndrome and refractory acute myeloid leukemia. J Pediatr Hematol Oncol 2019;41(1):38–40. DOI: 10.1097/MPH.0000000000001158.

3. Александрова Г.А., Голубев Н.А., Тюрина Е.М. и др. Социально значимые заболевания населения России в 2018 г. (статистические материалы). Министерство здравоохранения Российской Федерации. М., 2019. 73 с.

4. Мень Т.Х., Поляков В.Г., Алиев М.Д. Эпидемиология злокачественных новообразований у детей в России. Онкопедиатрия 2014;1(1):7–12.

5. Kelly L.M., Gilliland D.G. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 2002;3:179–98. DOI: 10.1146/annurev. genom.3.032802.115046.

6. de Rooij J.D., Zwaan C.M., van den Heuvel­Eibrink M. Pediatric AML: from biology to clinical management. J Clin Med 2015;4(1):127–49. DOI: 10.3390/jcm4010127.

7. Betts D.R., Ammann R.A., Hirt A. et al. The prognostic significance of cytogenetic aberrations in childhood acute myeloid leukaemia. A study of the Swiss Paediatric Oncology Group (SPOG). Eur J Haematol 2007;78(6):468–76. DOI: 10.1111/j.1600­0609.2007.00854.x.

8. Grimwade D. The clinical significance of cytogenetic abnormalities in acute mye­loid leukaemia. Best Pract Res Clin Haematol 2001;14(3):497–529. DOI: 10.1053/beha.2001.0152.

9. Swerdlow S.H., Campo E., Harris N.L. et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th edn. IARC: Lyon, 2017.

10. Balgobind B.V., Hollink I.H., ArentsenPeters S.T. et al. Integrative analysis of type­I and type­II aberrations underscores the genetic heterogeneity of pediatric acute myeloid leukemia. Haematologica 2011;96(10):1478–87. DOI: 10.3324/haematol.2010.038976.

11. Coenen E.A., Raimondi S.C., Harbott J. et al. Prognostic significance of addition­al cytogenetic aberrations in 733 de novo pediatric 11q23/MLL­rearranged AML patients: results of an international study. Blood 2011;117:7102–11. DOI: 10.1182/blood­2010­12­328302.

12. Von Neuhoff C., Reinhardt D., Sander A. et al. Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML­BFM 98. J Clin Oncol 2010;28(16):2682–9. DOI: 10.1200/JCO.2009.25.6321.

13. Hasle H., Alonzo T.A., Auvrignon A. et al. Monosomy 7 and deletion 7q in children and adolescents with acute myeloid leukemia: an international retrospective study. Blood 2007;109(11):4641–7. DOI: 10.1182/blood­2006­10­051342.

14. Bachas C., Schuurhuis G.J., Hollink I.H. et al. High­frequency type I/II mutational shifts between diagnosis and relapse are associated with outcome in pediatric AML: Implications for personalized medicine. Blood 2010;116:2752–8.

15. Abu­Duhier F.M., Goodeve A.C., Wilson G.A. et al. FLT3 internal tandem duplication mutations in adult acute myeloid leukaemia define a high­risk group. Br J Haematol 2000;111(1):190–5. DOI: 10.1046/j.1365­2141.2000.02317.x.

16. Tarlock K., Meshinchi S. Pediatric acute myeloid leukemia: biology and therapeutic implications of genomic variants. Pediatr Clin N Am 2015;62(1):75–93. DOI: 10.1016/j.pcl.2014.09.007.

17. Truong T.H., Pole J.D., Barber R. et al. Enrollment on clinical trials does not improve survival for children with acute myeloid leukemia: a population­based study. Cancer 2018;124(20):4098–106. DOI: 10.1002/cncr.31728.

18. Суворов Д.И., Климкович Н.Н. Лечение рецидивов и рефрактерных форм острых миелоидных лейкозов. Проблемы здоровья и экологии 2014;4(42):75–80.

19. Попа А.В., Горохова Е.В., Серебрякова И.Н. и др. Эпигенетическая терапия индукции ремиссии у детей, больных острым миелоидным лейкозом. Клиническая онкогематология 2008;1(1):34–8.

20. Niewerth D., Creutzig U., Bierings M.B., Kaspers G.J. A review on allogenetic stem cell transplantantation for newly diagnosed pediatric acute myeloid leukemia. Blood 2010;116(13):2205–13. DOI: 10.1182/blood­2010­01­261800.

21. Abrahamsson J., Forestier E., Heldrup J. et al. Therapy in pediatric acute myeloid leukemia with excellent remission rate. J Clin Oncol 2011;29(3):310–5. DOI: 10.1200/JCO.2010.30.6829.

22. Pession A., Rondelli R., Basso G. et al. Treatment and long­term results in children with acute myeloid leukaemia treated according to the AIEOP AML protocols. Leukemia 2005;19(12):2043–53. DOI: 10.1038/sj.leu.2403869.

23. Tomizawa D., Tabuchi K., Kinoshita A. et al. Repetitive cycles of high­dose cytarabine are effective for childhood acute myeloid leukemia: long­term outcome of the children with AML treated on two consecutive trials of Tokyo Children’s Cancer Study Group. Pediatr Blood Cancer 2007;49(2):127–32. DOI: 10.1002/pbc.20944.

24. Horan J.T., Alonzo T.A., Lyman G.H. et al. Impact of disease risk on efficacy of matched related bone marrow transplantation for pediatric acute myeloid leukemia: the Children’s Oncology Group. J Clin Oncol 2008;26(35):5797–801. DOI: 10.1200/JCO.2007.13.5244.

25. Pession A., Masetti R., Rizzari C. et al. Results of the AIEOP AML 2002/01 multicenter prospective trial for the treatment of children with acute myeloid leukemia. Blood 2013;122(2):170–8. DOI: 10.1182/blood­2013­03­491621.

26. Webb D.K., Wheatley K., Harrison G. et al. Outcome for children with relapsed acute myeloid leukaemia following initial therapy in the Medical Research Council (MRC) AML 10 trial. MRC Childhood Leukaemia Working Party. Leukemia 1999;13(1):25–31. DOI: 10.1038/sj.leu.2401254.

27. Bunin N.J., Davies S.M., Aplenc R. et al. Unrelated donor bone marrow transplantation for children with acute myeloid leukemia beyond first remission or refractory to chemotherapy. J Clin Oncol 2008;26(26):4326–32.

28. Passweg J.R., Baldomero H., Peters C. et al. Hematopoietic SCT in Europe: Data and trends in 2012 with special consideration of pediatric trans­plantation. Bone Marrow Transpl 2014;49(6):744–50. DOI: 10.1038/bmt.2014.55.

29. Sander A., Zimmermann M., Dworzak M. et al. Consequent and intensified relapse therapy improved survival in pediatric AML: results of relapse treatment in 379 patients of three consecutive AML­BFM trials. Leukemia 2010;24(8):1422–8. DOI: 10.1038/leu.2010.127.

30. Rubnitz J.E., Razzouk B.I., Lensing S. et al. Prognostic factors and outcome of recurrence in childhood acute myeloid leukemia. Cancer 2007;109(1):157–63. DOI: 10.1002/cncr.22385.

31. Gorman M.F., Ji L., Ko R.H. et al. Outcome for children treated for relapsed or re­fractory acute myelogenous leukemia (rAML): a Therapeutic Advances in Childhood Leukemia (TACL) Consortium study. Pediatr Blood Cancer 2010;55(3):421–9. DOI: 10.1002/pbc.22612.

32. Kaspers G.J., Zimmermann M., Reinhardt D. et al. Improved outcome in pediatric relapsed acute myeloid leukemia: results of a randomized trial on liposomal daunorubicin by the Internation BFM Study Group. J Clin Oncol 2013;31(5):599–607. DOI: 10.1200/JCO.2012.43.7384.

33. Gandhi V., Estey E., Du M. et al. Minimum dose of fludarabine for the maximal modulation of 1­beta­ D­arabinofuranosylcytosine triphosphate in human leukemia blasts during therapy. Clin Cancer Res 1997;3(9):1539–45.

34. Clavio M., Carrara P., Miglino M. et al. High efficacy of fludarabine­containing therapy (FLAG­FLANG) in poor risk acute myeloid leukemia. Haematologica 1996;81(6):513–20.

35. Tardi P., Johnstone S.J., Harasym N. et al. In vivo maintenance of synergistic cytarabine: daunorubicin ratios greatly enhances therapeutic efficacy. Leuk Res 2009;33(1):129–39. DOI: 10.1016/j.leukres.2008.06.028.

36. Tavil B., Aytac S., Balci Y.I. et al. Fludarabine, cytarabine, granulocyte colonys­timulating factor, and idarubicin (FLAG­IDA) for the treatment of children with poor­prognosis acute leukemia: the Hacettepe experience. Pediatr Hematol Oncol 2010;27(7):517–28. DOI: 10.3109/08880018.2010.493578.

37. Rubnitz J.E., Razzouk B.I., Srivastava D.K. et al. Phase II trial of cladribine and cytarabine in relapsed or refractory myeloid malignancies. Leuk Res 2004;28(4):349–52. DOI: 10.1016/j.leukres.2003.08.010.

38. Inaba H., Stewart C.F., Crews K.R. et al. Combination of cladribine plus topotecan for recurrent or refractory pediatric acute myeloid leukemia. Cancer 2010;116(1):98–105. DOI: 10.1002/cncr.24712.

39. Vahdat L., Wong E.T., Wile M.J. et al. Therapeutic and neurotoxic effects of 2­chlorodeoxyadenosine in adults with acute myeloid leukemia. Blood 1994;84(10):3429–34.

40. Cheson B.D., Vena D.A., Foss F.M. et al. Neurotoxicity of purine analogs: a review. J Clin Oncol 1994;12(10):2216–28.

41. Bonate P.L., Arthaud L., Cantrell W.R. Jr et al. Discovery and development of clofarabine: a nucleoside analogue for treating cancer. Nat Rev Drug Discov 2006;5(10):855–63. DOI: 10.1038/nrd2055.

42. Cooper T.M., Alonzo T.A., Gerbing R.B. et al. AAML0523: A report from the Children’s Oncology Group on the efficacy of clofarabine in combination with cytarabine in pediatric patients with recurrent acute myeloid leukemia. Cancer 2014;120(16):2482–9. DOI: 10.1002/cncr.28674.

43. Shukla N., Kobos R., Renaud T. et al. Phase II trial of clofarabine with topotecan, vinorelbine, and thiotepa in pediatric patients with relapsed or refractory acute leukemia. Pediatr Blood Cancer 2014;61(3):431–5. DOI: 10.1002/pbc.24789.

44. Abd Elmoneim A., Gore L., Ricklis R.M. et al. Phase I dose­escalation trial of clofarabine followed by escalating doses of fractionated cyclophosphamide in children with relapsed or refractory acute leukemias. Pediatr Blood Cancer 2012;59(7):1252–8.

45. Miano M., Pistorio A., Putti M.C. et al. Clofarabine, cyclophosphamide and etoposide for the treatment of relapsed or resistant acute leukemia in pediatric patients. Leuk Lymphoma 2012;53(9):1693–8. DOI: 10.3109/10428194.2012.663915.

46. Van Dalen E.C., van der Pal H.J., Bakker P.J. et al. Cumulative incidence and risk factors of mitoxantrone­induced cardiotoxicity in children: a systematic review. Eur J Cancer 2004;40(5):643–52. DOI: 10.1016/j.ejca.2003.12.006.

47. Archimbaud E., Thomas X., Leblond V. et al. Timed sequential chemotherapy for previously treated patients with acute myeloid leukemia: long­term follow­up of the etoposide, mitoxantrone, and cytarabine­86 trial. J Clin Oncol 1995;13(1):11–8. DOI: 10.1200/JCO.1995.13.1.11.

48. Wells R.J., Adams M.T., Alonzo T.A. et al. Mitoxantrone and cytarabine induction, high­dose cytarabine, and etoposide intensification for pediatric patients with relapsed or refractory acute myeloid leukemia: Children’s Cancer Group Study 2951. J Clin Oncol 2003;21(15):2940–7. DOI: 10.1200/JCO.2003.06.128.

49. Kolb E.A., Steinherz P.G. A new multidrug reinduction protocol with topotecan, vinorelbine, thiotepa, dexamethasone, and gemcitabine for relapsed or refractory acute leukemia. Leukemia 2003;17(10):1967–72. DOI: 10.1038/sj.leu.2403097.

50. Steinherz P.G., Seibel N.L., Ames M.M. et al. Phase I study of gemcitabine(difluoro deoxycytidine) in children with relapsed or refractory leukemia(CCG­0955): a report from the Children’s Cancer Group. Leuk Lymphoma 2002;43(10):1945–50. DOI: 10.1080/1042819021000015880.

51. Kolitz J.E., Strickland S.A., Cortes J.E. et al. Consolidation outcomes in CPX­351 versus cytarabine/daunorubicin­treated older patients with high­risk/secondary acute myeloid leukemia. Leuk Lymphoma 2019:1–10. DOI: 10.1080/10428194.2019.1688320.

52. Bengoa Ş.Y., Ataseven E., Kızmazoğlu D. et al. FLAG Regimen with or without idarubicin in children with relapsed/ refractory acute leukemia: experience from a Turkish pediatric hematology center. Turk J Hematol 2017;34(1):46–51. DOI: 10.4274/Tjh.2015.0411.

53. Kottaridis P.D., Gale R.E., Frew M.E. et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prog­nostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001;98(6):1752–9. DOI: 10.1182/blood.v98.6.1752.

54. Frohling S., Schlenk R.F., Breitruck J. et al. AML Study Group Ulm. Acute myeloid leukemia. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood 2002;100(13):4372–80. DOI: 10.1182/blood­2002­05­1440.

55. Smith C.C., Wang Q., Chin C.S. et al. Vali dation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 2012;485(7397):260–3. DOI: 10.1038/nature11016.

56. Pratz K.W., Sato T., Murphy K.M. et al. FLT3­mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood 2010;115(7):1425–32. DOI: 10.1182/blood­2009­09­242859.

57. Wilhelm S., Carter C., Lynch M. et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 2006;5(10):835–44. DOI: 10.1038/nrd2130.

58. Sharma М., Ravandi F., Bayraktar U.D. et al. Treatment of FLT3­ITD­positive acute myeloid leukemia relapsing after allogeneic stem cell transplantation with sorafenib. Biol Blood Marrow Transplant 2011;17(12):1874–7. DOI: 10.1016/j.bbmt.2011.07.011.

59. Zhang W., Konopleva M., Shi Y.X. et al. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst 2008;100(3):184–98. DOI: 10.1093/jnci/djm328.

60. Borthakur G., Kantarjian H., Ravandi F. et al. Phase I study of sorafenib in patients with refractory or relapsed acute leukemias. Haematologica 2011;96:62–8.

61. Crump M., Hedley D., Kamel­Reid S. et al. A randomized phase I clinical and biologic study of two schedules of sorafenib in patients with myelodysplastic syndrome or acute myeloid leukemia: a NCIC (National Cancer Institute of Canada) Clinical Trials Group Study. Leuk Lymphoma 2010;51(2):252–60. DOI: 10.3109/10428190903585286.

62. Pratz K.W., Cho E., Levis M.J. et al. A pharmacodynamics study of sorafenib in patients with relapsed and refractory acute leukemias. Leukemia 2010;24(8):1437–44. DOI: 10.1038/leu.2010.132.

63. Zauli G., Voltan R., Tisato V., Secchiero P. State of the art of the therapeutic perspective of sorafenib against hematological malignancies. Curr Med Chem 2012;19(28):4879–84. DOI: 10.2174/092986712803341548.

64. Inaba H., Rubnitz J.E., Coustan­Smith E. et al. Phase I pharmacokinetic and pharmacodynamic study of the multikinase inhibitor sorafenib in combination with clofarabine and cytarabine in pediatric relapsed/refractory leukemia. J Clin Oncol 2011;29(24):3293–300. DOI: 10.1200/JCO.2011.34.7427.

65. Zarrinkar P.P., Gunawardane R.N., Cramer M.D. et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood 2009;114(14):2984–92. DOI: 10.1182/blood­2009­05­222034.

66. Cortes J.E., Kantarjian H., Foran J.M. et al. Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS­like tyrosine kinase 3­internal tandem duplication status. J Clin Oncol 2013;31(29):3681–7. DOI: 10.1200/JCO.2013.48.8783.

67. Cortes J., Perl A.E., Dohner H. et al. A phase II open­label, AC220 monotherapy efficacy (ACE) study in patients with acute myeloid leukemia (AML) with FLT3­ITD activating mutations: interim results. Haematologica 2011;96:1019a.

68. Borthakur G., Kantarjian H.M., O’Brien S. et al. The combination of quizartinib with azacitidine or low dose cytarabine is highly active in patients (Pts) with FLT3­ITD mutated myeloid leukemias: interim report of a phase I/II trial. Blood 2014;124:388.

69. Alvarado Y., Kantarjian H.M., Luthra R. et al. Treatment with FLT3 inhibitor in patients with FLT3­mutated acute myeloid leukemia is associated with development of secondary FLT3 – tyrosine kinase domain mutations. Cancer 2014;120(14):2142–9. DOI: 10.1002/cncr.28705.

70. Albers C., Leischner H., Verbeek M. et al. The secondary FLT3­ITD F691L mutation induces resistance to AC220 in FLT3­ITD1 AML but retains in vitro sensitivity to PKC412 and sunitinib. Leukemia 2013;27(6):1416–8. DOI: 10.1038/leu.2013.14.

71. Kampa­Schittenhelm K.M., Heinrich M.C., Akmut F. et al. Quizartinib (AC220) is a potent second generation class III tyrosine kinase inhibitor that displays a distinct inhibition profile against mutant­FLT3, ­PDGFRA and ­KIT isoforms. Mol Cancer 2013;12:19. DOI: 10.1186/1476­4598­12­19.

72. Smith C.C., Lasater E.A., Lin K.C. et al. Crenolanib is a selective type I pan­FLT3 inhibitor. Proc Natl Acad Sci USA 2014;111(14):5319–24. DOI: 10.1073/pnas.1320661111.

73. Randhawa J.K., Kantarjian H., Borthakur G. et al. Results of a phase II study of crenolanib in relapsed/refractory acute myeloid leukemia patients (Pts) with activating FLT3 mutations. Blood 2014;124(21):389.

74. Paschka P., Schlenk R.F., Weber D. et al. Adding dasatinib to intensive treatment in core­binding factor acute myeloid leukemia­results of the AMLSG 11­08 trial. Leukemia 2018;32(7):1621–30. DOI: 10.1038/s41375­018­0129­6.

75. Zwaan C.M., Söderhäll S., Brethon B. A phase 1/2, open­label, dose­escalation study of midostaurin in children with relapsed or refractory acute leukaemia. Br J Haematol 2019;185(3):623–7. DOI: 10.1111/bjh.15593.

76. Perl A.E., Martinelli G., Cortes J.E. et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3­Mutated AML. N Engl J Med 2019;381(18):1728–40. DOI: 10.1056/NEJMoa1902688.

77. Creutzig U., Harbott J., Sperling C. et al. Clinical significance of surface antigen expression in children with acute myeloid leukemia: results of study AML­BFM­87. Blood 1995;86(8):3097–108.

78. Feldman E., Kalaycio M., Weiner G. et al. Treatment of relapsed or refractory acute myeloid leukemia with humanized antiCD33 monoclonal antibody HuM195. Leukemia 2003;17(2):314–8. DOI: 10.1038/sj.leu.2402803.

79. Petersdorf S.H., Kopecky K.J., Slovak M. et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood 2013;121(24):4854–60. DOI: 10.1182/blood­2013­01­466706.

80. Zwaan C.M., Reinhardt D., Corbacioglu S. et al. Gemtuzumab ozogamicin: first clinical experiences in children with relapsed/refractory acute myeloid leukemia treated on compassionate­use basis. Blood 2003;101(10):3868–71. DOI: 10.1182/blood­2002­07­1947.

81. Reinhardt D., Diekamp S., Fleischhack G. et al. Gemtuzumab ozogamicin (Mylotarg) in children with refractory or relapsed acute myeloid leukemia. Onkologie 2004;27(3):269–72. DOI: 10.1159/000075606.

82. Hütter­Krönke M.L., Benner A., Döhner K. et al. Salvage therapy with high­ dose cytarabine and mitoxantrone in combina tion with all­trans retinoic acid and gemtu zumab ozogamicin in acute myeloid leukemia refractory to first induction therapy. Haematologica 2016;101(7):839–45. DOI: 10.3324/haematol.2015.141622.

83. Aplenc R., Alonzo T.A., Gerbing R.B. et al. Safety and efficacy of gemtuzumab ozogamicin in combination with chemotherapy for pediatric acute myeloid leukemia: a report from the Children’s Oncology Group. J Clin Oncol 2008;26(14): 2390–3295. DOI: 10.1200/JCO.2007.13.0096.

84. Niktoreh N., Lerius B., Zimmermann M. et al. Gemtuzumab ozogamicin in children with relapsed or refractory acute myeloid leukemia: a report by Berlin–Frankfurt– Münster study group. Haematologica 2018;104(1):120–7. DOI: 10.3324/haematol.2018.191841.

85. Cancer Genome Atlas Research Network, Ley T.J., Miller C. et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013;368(22):2059–74. DOI: 10.1056/NEJMoa1301689.

86. Серегин Г.З., Лифшиц А.В., Алекскерова Г.А., Валиев Т.Т. Возможности эпигенетической терапии острых миелоидных лейкозов у детей. Современная онкология 2019;(4):36–9.

87. Chan S.M., Majeti R. Role of DNMT3A, TET2, and IDH1/2 mutations in preleukemic stem cells in acute myeloid leukemia. Int J Hematol 2013;98(6):648–57. DOI: 10.1007/s12185­013­1407­8.

88. DiNardo C., Stein E.M., Altman J.K. et al. AG­221, an oral, selective, first­inclass, potent inhibitor of the IDH2 mutant enzyme, induced durable responses in a phase 1 study of IDH2 mutationpositive advanced hematologic malignancies. EHA Library 2015;100710;569.

89. Galkin M., Jonas B.A. Enasidenib in the treatment of relapsed/refractory acute myeloid leukemia: an evidencebased review of its place in therapy. Core Evidence 2019;14:3–17. DOI: 10.2147/CE.S172912.

90. DiNardo C.D., Stein E.M., de Botton S. et al. Durable remissions with ivosidenib in IDH1­mutated relapsed or refractory AML. N Engl J Med 2018;378(25):2386–98. DOI: 10.1056/NEJMoa1716984.

91. Schoch C., Schnittger S., Klaus M. et al. AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, part­ner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood 2003;102(7):2395–402. DOI: 10.1182/blood­2003­02­0434.

92. Stein E.M., Tallman M.S. Emerging therapeutic drugs for AML. Blood 2016;127(1):71–8. DOI: 10.1182/blood­2015­07­604538.

93. Rodríguez­Paredes M., Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med 2011;17(3):330–9. DOI: 10.1038/nm.2305.

94. Thomas X.G., Dmoszynska A., Wierzbowska A. et al. Results from a randomized phase III trial of decitabine versus supportive care or low­dose cytarabine for the treatment of older patients with newly diagnosed AML. J Clin Oncol 2011;29(15 Suppl.):6504.

95. Phillips C.L., Davies S.M., McMasters R. et al. Low dose decitabine in very high risk relapsed or refractory acute myeloid leukaemia in children and young adults. Br J Haematol 2013;161(3):406–10. DOI: 10.1111/bjh.12268.

96. Silva G., Cardoso B.A., Belo H., Almeida A.M. Vorinostat induces apoptosis and differentiation in myeloid malig­nancies: genetic and molecular mechanisms. PLoS One 2013;8(1):e53766. DOI: 10.1371/journal.pone.0053766.

97. Gojo I., Tan M., Fanget H.B. et al. Translational phase I trial of vorinostat (suberoylanilide hydroxamic acid) combined with cytarabine and etoposide in patients with relapsed, refractory, or high­risk acute myeloid leukemia. Clin Cancer Res 2013;19(7):1838–51. DOI: 10.1158/1078­0432.CCR­ 12­3165.

98. Garcia­Manero G., Tambaro F.P., Bekele N.B. et al. Phase II trial of vorinostat with idarubicin and cytarabine for patients with newly diagnosed acute myelogenous leukemia or myelodysplastic syndrome. J Clin Oncol 2012;30(18):2204–10. DOI: 10.1200/JCO.2011.38.3265.

99. Zhang Y., Wang L., Zhang R. et al. Long­term follow­up of children with acute pro­myelocytic leukemia treated with Beijing Children’s Hospital APL 2005 protocol (BCH­APL 2005). Pediatr Hematol Oncol 2019;36(7):399–409. DOI: 10.1080/08880018.2019.1621971.

100. Küley­Bagheri Y., Kreuzer K.A., Monsef I. et al. Effects of all­trans retinoic acid (ATRA) in addition to chemotherapy for adults with acute myeloid leukaemia (AML) (non­acute promyelocytic leukaemia (non­APL)). Cochrane Database Syst Rev 2018;8(8):CD011960. DOI: 10.1002/14651858.CD011960.pub2.

101. Немировченко В.С., Флейшман Е.В., Сокова О.И. и др. Деметилирование ДНК в лечении детей с острыми миелоидными лейкозами. Успехи молекулярной онкологии 2015;2(4).

102. Horton T.M., Perentesis J., Gamis A.S. et al. A phase 2 study of bortezomib combined with reinduction chemotherapy in children and young adults with recurrent, refractory or secondary acute myeloid leukemia: a Children’s Oncology Group (COG) study [Abstract 3580]. ASH Annual Meeting Abstracts 2012:120.

103. Vivier E., Raulet D.H., Moretta A. et al. Innate or adaptive immunity? Science 2011;331(6013):44–9. DOI: 10.1126/science.1198687.

104. Rubnitz J.E., Inaba H., Ribeiro R.C. et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol 2010;28(6):955–9. DOI: 10.1200/JCO.2009.24.4590.

105. Berg M., Lundqvist A., McCoy P.Jr et al. Clinical­grade ex vivo­expanded human natural killer cells up­regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy 2009;11(3):341–55.

106. Fujisaki H., Kakuda H., Shimasaki N. et al. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res 2009;69(9):4010–7. DOI: 10.1158/0008­5472.CAN­08­3712.

107. Ritchie D.S., Neeson P.J., Khot A. et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther 2013;21(11):2122–9. DOI: 10.1038/mt.2013.154.


Рецензия

Для цитирования:


Махачева Ф.А., Валиев Т.Т. Лечение острых миелоидных лейкозов у детей: современный взгляд на проблему. Онкогематология. 2020;15(1):10-27. https://doi.org/10.17650/1818-8346-2020-15-1-10-27

For citation:


Makhacheva F.A., Valiev T.T. Pediatric acute myeloid leukemias treatment: current scientific view. Oncohematology. 2020;15(1):10-27. (In Russ.) https://doi.org/10.17650/1818-8346-2020-15-1-10-27

Просмотров: 8494


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)