Preview

Онкогематология

Расширенный поиск

Адипоциты костного мозга при множественной миеломе

https://doi.org/10.17650/1818-8346-2019-14-1-60-75

Аннотация

Множественная миелома, в основе возникновения которой лежит клональная пролиферация плазматических клеток в костном мозге, занимает одно из ведущих мест в структуре онкогематологических заболеваний. Патогенетические механизмы множественной миеломы пока окончательно не выяснены. Принято считать, что необходимое условие развития и прогрессирования заболевания – взаимодействие неопластических плазматических клеток с элементами костномозгового микроокружения, доминирующим клеточным компонентом которого являются адипоциты. В обзоре приведены новые данные, касающиеся характера и особенностей взаимодействия адипоцитов костного мозга с миеломными клетками, гемопоэтическими стволовыми клетками и клетками-предшественниками, мезенхимальными стволовыми клетками, остеобластами, остеокластами, эндотелиальными клетками и клетками иммунной системы. Особое внимание уделено вырабатываемым адипоцитами костного мозга адипокинам, факторам роста, цитокинам, хемокинам и свободным жирным кислотам, которые в той или иной мере обеспечивают условия для предпочтительного роста и миграции опухолевых плазматических клеток, угнетения гемопоэза, резорбции костной ткани, активации ангиогенеза и формирования иммуносупрессии.

Об авторе

A. A. Фильченков
Институт экспериментальной патологии, онкологии и радиобиологии им. Р.Е. Кавецкого НАН Украины; 03022 Киев, ул. Васильковская, 45
Украина


Список литературы

1. Вотякова О.М., Демина Е.А. Множественная миелома. В кн.: Клиническая онкогематология: руководство для врачей. Под ред. М.А. Волковой. М.: Медицина, 2001. С. 423–448. [Votyakova O.M., Demina E.A. Multiple myeloma. In: Clinical Oncohematology: physicians guide. Ed.: M.A. Volkova. Moscow: Meditsina, 2001. Pp. 423–448. (In Russ.)].

2. Rajkumar S.V., Dimopoulos M.A., Palumbo A. et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014;15(12):e538–48. DOI: 10.1016/S1470-2045(14)70442-5. PMID: 25439696.

3. Бессмельцев С.С. Множественная миелома (лекция). Вестник гематологии 2014;X(3):6–39. [Bessmeltsev S.S. Multiple myeloma (lecture). Vestnik gematologii = Bulletin of Hematology 2014;X(3):6–39. (In Russ.)].

4. Podar K., Tai Y.T., Hideshima T. et al. Emerging therapies for multiple myeloma. Expert Opin Emerg Drugs 2009;14(1): 99–127. DOI: 10.1517/14728210802676278. PMID: 19249983.

5. SEER Cancer Statistics Review, 1975–2015. National Cancer Institute. Eds.: M.D. Bethesda, A.M. Noone, N. Howlader et al. Section 18. Myeloma. Available at: https://seer.cancer.gov/ csr/1975_2015/.

6. Ailawadhi S., Aldoss I.T., Yang D. et al. Outcome disparities in multiple myeloma: a SEER-based comparative analysis of ethnic subgroups. Br J Haematol 2012;158(1):91–8. DOI: 10.1111/j.1365-2141.2012.09124.x. PMID: 22533740.

7. Myeloma: Diagnosis and Management. London: National Institute for Health and Care Excellence (UK), 2016. Available at: https://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0086429/.

8. Федоренко З.П., Гулак Л.О., Михайлович Ю.Й. та ін. Рак в Україні, 2016–2017. Бюлетень Національного канцерреєстру 2018;19:66–7. [Fedorenko Z.P., Gulak L.O., Mikhaylovich Yu.Y. et al. Cancer in Ukraine, 2016–2017. Bulletin of the National Cancer Register 2018;19: 66–7.(In Ukrainian)].

9. Gluzman D.F., Sklyarenko L.M., Zavelevich M.P. et al. Overview on association of different types of leukemias with radiation exposure. Exp Oncol 2015;37(2):89–93. PMID: 26112933.

10. Bazyka D., Prysyazhnyuk A., Gudzenko N. et al. Epidemiology of late health effects in Ukrainian Chornobyl cleanup workers. Health Phys 2018;115(1):161–9. DOI: 10.1097/HP.0000000000000868. PMID: 29787442.

11. Durie B.G., Salmon S.E. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 1975;36(3):842–54. PMID: 1182674.

12. Greipp P.R., San Miguel J., Durie B.G. et al. International staging system for multiple myeloma. J Clin Oncol 2005;23(15):3412–20. DOI: 10.1200/JCO.2005.04.242. PMID: 15809451.

13. Palumbo A., Avet-Loiseau H., Oliva S. et al. Revised international staging system for multiple myeloma: a report from International Myeloma Working Group. J Clin Oncol 2015;33(26):2863–9. DOI: 10.1200/JCO.2015.61.2267. PMID: 26240224.

14. Ricci C., Cova M., Kang Y.S. et al. Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 1990;177(1):83–8. DOI: 10.1148/radiology.177.1.2399343. PMID: 2399343.

15. Schellinger D., Lin C.S., Hatipoglu H.G., Fertikh D. Potential value of vertebral proton MR spectroscopy in determining bone weakness. AJNR Am J Neuroradiol 2001;22(8):1620–7. PMID: 11559519.

16. Scheller E.L., Doucette C.R., Learman B.S. et al. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat Commun 2015;6:7808. DOI: 10.1038/ncomms8808. PMID: 26245716.

17. Griffith J.F., Yeung D.K., Ma H.T. et al. Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J Magn Reson Imaging 2012;36(1):225–30. DOI: 10.1002/jmri.23619. PMID: 22337076.

18. Bukowska J., Frazier T., Smith S. et al. Bone marrow adipocyte developmental origin and biology. Curr Osteoporos Rep 2018;16(3):312–9. DOI: 10.1007/s11914-018-0442-z. PMID: 29667012.

19. Ghali O., Al Rassy O., Hardouin P., Chauveau C. Increased bone marrow adiposity in a context of energy deficit: The tip of the iceberg? Front Endocrinol (Lausanne) 2016;7:125. DOI: 10.3389/fendo.2016.00125. PMID: 27695438.

20. Tencerova M., Kassem M. The bone marrow-derived stromal cells: commitment and regulation of adipogenesis. Front Endocrinol (Lausanne) 2016;7:127. DOI: 10.3389/fendo.2016.00127. PMID: 27708616.

21. Dong X., Bi L., He S. et al. FFAs-ROSERK/P38 pathway plays a key role in adipocyte lipotoxicity on osteoblasts in co-culture. Biochimie 2014;101:123–31. DOI: 10.1016/j.biochi.2014.01.002. PMID: 24424405.

22. Liu Z., Xu J., He J. et al. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation. Oncotarget 2015;6(33):34329–41. DOI: 10.18632/oncotarget.6020. PMID: 26455377.

23. Amable P.R., Teixeira M.V., Carias R.B. et al. Gene expression and protein secretion during human mesenchymal cell differentiation into adipogenic cells. BMC Cell Biol 2014;15:46. DOI: 10.1186/s12860-014-0046-0. PMID: 25526965.

24. Naveiras O., Nardi V., Wenzel P.L. et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 2009;460(7252):259–63. DOI: 10.1038/nature08099. PMID: 19516257.

25. Tuljapurkar S.R., McGuire T.R., Brusnahan S.K. et al. Changes in human bone marrow fat content associated with changes in hematopoietic stem cell numbers and cytokine levels with aging. J Anat 2011;219(5):574–81. DOI: 10.1111/j.1469-7580.2011.01423.x. PMID: 21923862.

26. Corre J., Planat-Benard V., Corberand J.X. et al. Human bone marrow adipocytes support complete myeloid and lymphoid differentiation from human CD34 cells. Br J Haematol 2004;127(3): 344–7. DOI: 10.1111/j.1365-2141.2004.05198.x. PMID: 15491297.

27. Gainsford T., Willson T.A., Metcalf D. et al. Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proc Natl Acad Sci USA 1996;93(25):14564–8. PMID: 8962092.

28. Poloni A., Maurizi G., Serrani F. et al. Molecular and functional characterization of human bone marrow adipocytes. Exp Hematol 2013;41(6):558–66. DOI: 10.1016/j.exphem.2013.02.005. PMID: 23435314.

29. Mattiucci D., Maurizi G., Izzi V. et al. Bone marrow adipocytes support hematopoietic stem cell survival. J Cell Physiol 2018;233(2):1500–11. DOI: 10.1002/jcp.26037. PMID: 28574591.

30. Cawthorn W.P., Scheller E.L., Learman B.S. et al. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab 2014;20(2):368–75. DOI: 10.1016/j.cmet.2014.06.003. PMID: 24998914.

31. Di Mascio L., Voermans C., Uqoezwa M. et al. Identification of adiponectin as a novel hemopoietic stem cell growth factor. J Immunol 2007;178(6):3511–20. PMID: 17339446.

32. Lauby-Secretan B., Scoccianti C., Loomis D. et al.; International Agency for Research on Cancer Handbook Working Group. Body fatness and cancer – viewpoint of the IARC Working Group. N Engl J Med 2016;375(8):794–8. DOI: 10.1056/NEJMsr1606602. PMID: 27557308.

33. Teras L.R., Kitahara C.M., Birmann B.M. et al. Body size and multiple myeloma mortality: a pooled analysis of 20 prospective studies. Br J Haematol 2014;166(5):667–76. DOI: 10.1111/bjh.12935. PMID: 24861847.

34. Thordardottir M., Lindqvist E.K., Lund S.H. et al. Obesity and risk of monoclonal gammopathy of undetermined significance and progression to multiple myeloma: a population-based study. Blood Adv 2017;1(24):2186–92. DOI: 10.1182/bloodadvances. 2017007609. PMID: 29296866.

35. Doucette C.R., Horowitz M.C., Berry R. et al. A high fat diet increases bone marrow adipose tissue (MAT) but does not alter trabecular or cortical bone mass in C57BL/6J mice. J Cell Physiol 2015;230(9):2032–7. DOI: 10.1002/jcp.24954. PMID: 25663195.

36. Бессмельцев С.С. Множественная миелома (патогенез, клиника, диагностика, дифференциальный диагноз). Часть I. Клиническая онкогематология 2013;6(3):237–57. [Bessmeltsev S.S. Multiple myeloma (pathogenesis, clinic, diagnosis, differential diagnosis). Part I. Klinicheskaya onkogematologiya = Clinical Oncohematology 2013;6(3):237–57. (In Russ.)].

37. Neri P., Bahlis N.J. Targeting of adhesion molecules as a therapeutic strategy in multiple myeloma. Curr Cancer Drug Targets 2012;12(7):776–96. PMID: 22671924.

38. Bullwinkle E.M., Parker M.D., Bonan N.F. et al. Adipocytes contribute to the growth and progression of multiple myeloma: Unraveling obesity related differences in adipocyte signaling. Cancer Lett 2016;380(1):114–21. DOI: 10.1016/j.canlet.2016.06.010. PMID: 27317873.

39. Caers J., Deleu S., Belaid Z. et al. Neighboring adipocytes participate in the bone marrow microenvironment of multiple myeloma cells. Leukemia 2007;21(7):1580–4. DOI: 10.1038/sj.leu.2404658. PMID: 17377589.

40. Фильченков А.А., Залесский В.Н. Лептин, адипоциты и ожирение организма. Российский биотерапевтический журнал 2007;6(3):30–7. [Philchenkov A.A., Zalesskiy V.N. Leptin, adipocytes and obesity. Rossiyskiy bioterapevticheskiy zhurnal = Russian Biotherapeutic Journal 2007;6(3):30–7. (In Russ.)].

41. Yu W., Cao D.D., Li Q.B. et al. Adipocytes secreted leptin is a pro-tumor factor for survival of multiple myeloma under chemotherapy. Oncotarget 2016;7(52):86075–86. DOI: 10.18632/oncotarget.13342. PMID: 27863383.

42. Alexandrakis M.G., Passam F.H., Sfiridaki A. et al. Serum levels of leptin in multiple myeloma patients and its relation to angiogenic and inflammatory cytokines. Int J Biol Markers 2004;19(1):52–7. PMID: 15077927.

43. Westhrin M., Moen S.H., Kristensen I.B. et al. Chemerin is elevated in multiple myeloma patients and is expressed by stromal cells and pre-adipocytes. Biomark Res 2018;6:21. DOI: 10.1186/s40364-018-0134-y. PMID: 29946468.

44. Medina E.A., Oberheu K., Polusani S.R. et al. PKA/AMPK signaling in relation to adiponectin’s antiproliferative effect on multiple myeloma cells. Leukemia 2014;28(10):2080–9. DOI: 10.1038/leu.2014.112. PMID: 24646889.

45. Dalamaga M., Christodoulatos G.S. Adiponectin as a biomarker linking obesity and adiposopathy to hematologic malignancies. Horm Mol Biol Clin Investig 2015;23(1):5–20. DOI: 10.1515/hmbci-2015-0016. PMID: 26057219.

46. Fowler J.A., Lwin S.T., Drake M.T. et al. Host-derived adiponectin is tumorsuppressive and a novel therapeutic target for multiple myeloma and the associated bone disease. Blood 2011;118(22):5872–82. DOI: 10.1182/blood-2011-01-330407. PMID: 21908434.

47. Hofmann J.N., Birmann B.M., Teras L.R. et al. Low levels of circulating adiponectin are associated with multiple myeloma risk in overweight and obese individuals. Cancer Res 2016;76(7):1935–41. DOI: 10.1158/0008-5472.CAN-15-2406. PMID: 26921332.

48. Hofmann J.N., Mailankody S., Korde N. et al. Circulating adiponectin levels differ between patients with multiple myeloma and its precursor disease. Obesity (Silver Spring) 2017;25(8):1317–20. DOI: 10.1002/oby.21894. PMID: 28602036.

49. Santo L., Teras L.R., Giles G.G. et al. Circulating resistin levels and risk of multiple myeloma in three prospective cohorts. Br J Cancer 2017;117(8):1241–5. DOI: 10.1038/bjc.2017.282. PMID: 28829767.

50. Freund G.G., Kulas D.T., Mooney R.A. Insulin and IGF-1 increase mitogenesis and glucose metabolism in the multiple myeloma cell line, RPMI 8226. J Immunol 1993;151(4):1811–20. PMID: 7688386.

51. Wang M.C., Fu X.D., Li M.X. PI-3K/ Akt/GSK-3beta signaling cascades stimulated by insulin like growth factor-I contribute to multiple myeloma cells proliferation and survival. Chin Med J (Engl) 2006;119(14):1226–9. PMID: 16863618.

52. Sprynski A.C., Hose D., Caillot L. et al. The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor. Blood 2009;113(19):4614–26. DOI: 10.1182/blood-2008-07-170464. PMID: 19228610.

53. Drewinko B., Alexanian R. Growth kinetics of plasma cell myeloma. J Natl Cancer Inst 1977;58(5):1247–53. PMID: 857025.

54. Durie B.G., Salmon S.E., Moon T.E. Pretreatment tumor mass, cell kinetics, and prognosis in multiple myeloma. Blood 1980;55(3):364–72. PMID: 7357075.

55. Gu Z.J., De Vos J., Rebouissou C. et al. Agonist anti-gp130 transducer monoclonal antibodies are human myeloma cell survival and growth factors. Leukemia 2000;14(1):188–97. PMID: 10637495.

56. Tu Y., Gardner A., Lichtenstein A. The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells: roles in cytokine-dependent survival and proliferative responses. Cancer Res 2000;60(23):6763–70. PMID: 11118064.

57. Huo J., Xu S., Lin B. et al. Fas apoptosis inhibitory molecule is upregulated by IGF-1 signaling and modulates Akt activation and IRF4 expression in multiple myeloma. Leukemia 2013;27(5):1165–71. DOI: 10.1038/leu.2012.326. PMID: 23138182.

58. De Bruyne E., Bos T.J., Schuit F. et al. IGF-1 suppresses Bim expression in multiple myeloma via epigenetic and posttranslational mechanisms. Blood 2010;115(12):2430–40. DOI: 10.1182/blood-2009-07-232801. PMID: 20086250.

59. Kuhn D.J., Berkova Z., Jones R.J. et al. Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma. Blood 2012;120(16):3260–70. DOI: 10.1182/blood-2011-10-386789. PMID: 22932796.

60. Tai Y.T., Podar K., Catley L. et al. Insulinlike growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3’-kinase/AKT signaling. Cancer Res 2003;63(18):5850–8. PMID: 14522909.

61. Qiang Y.W., Yao L., Tosato G., Rudikoff S. Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells. Blood 2004;103(1):301–8. DOI: 10.1182/blood-2003-06-2066. PMID: 14504085.

62. Bieghs L., Johnsen H.E., Maes K. et al. The insulin-like growth factor system in multiple myeloma: diagnostic and therapeutic potential. Oncotarget 2016;7(30):48732–52. DOI: 10.18632/oncotarget.8982. PMID: 27129151.

63. Klein B., Zhang X.G., Lu Z.Y., Bataille R. Interleukin-6 in human multiple myeloma. Blood 1995;85(4): 863–72. PMID: 7849308.

64. Ogata A., Chauhan D., Teoh G. et al. IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade. J Immunol 1997;159(5):2212–21. PMID: 9278309.

65. Jourdan M., De Vos J., Mechti N., Klein B. Regulation of BCL-2-family proteins in myeloma cells by three myeloma survival factors: interleukin-6, interferon-alpha and insulin-like growth factor 1. Cell Death Differ 2000;7(12):1244–52. DOI: 10.1038/sj.cdd.4400758. PMID: 11175262.

66. Jourdan M., Tarte K., Legouffe E. et al. Tumor necrosis factor is a survival and proliferation factor for human myeloma cells. Eur Cytokine Netw 1999;10(1):65– 70. PMID: 10210775.

67. Lee C., Oh J.I., Park J. et al. TNF α mediated IL-6 secretion is regulated by JAK/STAT pathway but not by MEK phosphorylation and AKT phosphorylation in U266 multiple myeloma cells. Biomed Res Int 2013;2013:580135. DOI: 10.1155/2013/580135. PMID: 24151609.

68. Jöhrer K., Janke K., Krugmann J. et al. Transendothelial migration of myeloma cells is increased by tumor necrosis factor (TNF)-alpha via TNF receptor 2 and autocrine up-regulation of MCP-1. Clin Cancer Res 2004;10(6):1901–10. PMID: 15041705.

69. Jurisić V., Colović M. Correlation of sera TNF-alpha with percentage of bone marrow plasma cells, LDH, beta2-microglobulin, and clinical stage in multiple myeloma. Med Oncol 2002;19(3):133–9. DOI: 10.1385/MO:19:3:133. PMID: 12482123.

70. Trotter T.N., Gibson J.T., Sherpa T.L. et al. Adipocyte-lineage cells support growth and dissemination of multiple myeloma in bone. Am J Pathol 2016;186(11):3054–63. DOI: 10.1016/j.ajpath.2016.07.012. PMID: 27648615.

71. Luo Y., Chen G.L., Hannemann N. et al. Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metab 2015;22(5):886–94. DOI: 10.1016/j.cmet.2015.08.020. PMID: 26387866.

72. Zhu R.J., Wu M.Q., Li Z.J. et al. Hematopoietic recovery following chemotherapy is improved by BADGEinduced inhibition of adipogenesis. Int J Hematol 2013;97(1):58–72. DOI: 10.1007/s12185-012-1233-4. PMID: 23264188.

73. Spindler T.J., Tseng A.W., Zhou X., Adams G.B. Adipocytic cells augment the support of primitive hematopoietic cells in vitro but have no effect in the bone marrow niche under homeostatic conditions. Stem Cells Dev 2014;23(4): 434–41. DOI: 10.1089/scd.2013.0227. PMID: 24083324.

74. Grigorakaki C., Morceau F., Chateauvieux S. et al. Tumor necrosis factor α-mediated inhibition of erythropoiesis involves GATA-1/ GATA-2 balance impairment and PU. 1 over-expression. Biochem Pharmacol 2011;82(2):156–66. DOI: 10.1016/j.bcp.2011.03.030. PMID: 21501595.

75. Coimbra S., Catarino C., Santos-Silva A. The role of adipocytes in the modulation of iron metabolism in obesity. Obes Rev 2013;14(10):771–9. DOI: 10.1111/obr.12057. PMID: 23841713.

76. Пыко И.В., Корень С.В., Квачева З.Б., Федулов А.С. Мезенхимальные стволовые клетки костного мозга: свойства, функции, возможность использования в регенеративной и восстановительной терапии. Медицинский журнал 2007;(4):18–22. [Pyko I.V., Koren S.V., Kvacheva Z.B., Fedulov A.S. Bone marrow mesenchymal stem cells: properties, functions, possibility of use in regenerative therapy. Meditsinskiy zhurnal = Medical Journal 2007;(4):18–22. (In Russ.)].

77. Prockop D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997;276(5309):71–4. PMID: 9082988.

78. Muruganandan S., Parlee S.D., Rourke J.L. et al. Chemerin, a novel peroxisome proliferator-activated receptor gamma (PPARγ) target gene that promotes mesenchymal stem cell adipogenesis. J Biol Chem 2011;286(27):23982–95. DOI: 10.1074/jbc.M111.220491. PMID: 21572083.

79. Muruganandan S., Govindarajan R., McMullen N.M., Sinal C.J. Chemokinelike receptor 1 is a novel Wnt target gene that regulates mesenchymal stem cell differentiation. Stem Cells 2017;35(3):711–24. DOI: 10.1002/stem. 2520. PMID: 27733019.

80. Abdallah B.M., Kassem M. New factors controlling the balance between osteoblastogenesis and adipogenesis. Bone 2012;50(2):540–5. DOI: 10.1016/j.bone. 2011.06.030. PMID: 21745614.

81. Батюшин М.М. Хемерин. Роль в регуляции воспаления и возможности изучения в нефрологии. Нефрология 2014;18(5):8–15. [Batyushin M.M. Chemerin. Role in the regulation of inflammation and the possibility of studying in nephrology. Nefrologiya = Nephrology 2014;18(5):8–15. (In Russ.)].

82. Reagan M.R., Ghobrial I.M. Multiple myeloma mesenchymal stem cells: characterization, origin, and tumorpromoting effects. Clin Cancer Res 2012;18(2):342–9. DOI: 10.1158/1078-0432.CCR-11-2212. PMID: 22065077.

83. Reagan M.R., Mishima Y., Glavey S.V. et al. Investigating osteogenic differentiation in multiple myeloma using a novel 3D bone marrow niche model. Blood 2014;124(22):3250–9. DOI: 10.1182/blood-2014-02-558007. PMID: 25205118.

84. Melton L.J. 3rd, Kyle R.A., Achenbach S.J. et al. Fracture risk with multiple myeloma: a population-based study. J Bone Miner Res 2005;20(3):487–93. PMID: 15746994.

85. Kong Y.Y., Yoshida H., Sarosi I. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999;397(6717):315–23. PMID: 9950424.

86. Takeshita S., Fumoto T., Naoe Y., Ikeda K. Age-related marrow adipogenesis is linked to increased expression of RANKL. J Biol Chem 2014;289(24): 16699–710. DOI: 10.1074/jbc.M114.547919. PMID: 24753250.

87. Elbaz A., Wu X., Rivas D. et al. Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro. J Cell Mol Med 2010;14(4):982–91. DOI: 10.1111/j.1582-4934.2009.00751.x. PMID: 19382912.

88. Moonga B.S., Adebanjo O.A., Wang H.J. et al. Differential effects of interleukin-6 receptor activation on intracellular signaling and bone resorption by isolated rat osteoclasts. J Endocrinol 2002;173(3):395–405. PMID: 12065229.

89. Гельцер Б.И., Жилкова Н.Н., Ануфриева Н.Д., Кочеткова Е.А. Поражение костей при множественной миеломе. Тихоокеанский медицинский журнал 2011;(3):11–6. [Heltser B.I., Zhilkova N.N., Anufrieva N.D., Kochetkova E.A. Bone lesions in case of multiple myeloma. Tikhookeanskiy meditsinskiy zhurnal = Pacific Medical Journal 2011;(3):11–6. (In Russ.)].

90. Фильченков А.А. Терапевтический потенциал ингибиторов ангиогенеза. Онкология 2007;9(4):321–8. [Philchenkov A.A. Therapeutic potential of angiogenesis inhibitors. Onkologiya = Oncology 2007;9(4):321–8. (In Russ.)].

91. Weis S.M., Cheresh D.A. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 2011;17(11):1359–70. DOI: 10.1038/nm.2537. PMID: 22064426.

92. Cao Y., Arbiser J., D’Amato R.J. et al. Forty-year journey of angiogenesis translational research. Sci Transl Med 2011;3(114):114rv3. DOI: 10.1126/scitranslmed.3003149. PMID: 22190240.

93. Rajkumar S.V., Mesa R.A., Fonseca R. et al. Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clin Cancer Res 2002;8(7):2210–6. PMID: 12114422.

94. Di Raimondo F., Azzaro M.P., Palumbo G. et al. Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood. Haematologica 2000;85(8):800–5. PMID: 10942925.

95. Sezer O., Jakob C., Eucker J. et al. Serum levels of the angiogenic cytokines basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) in multiple myeloma. Eur J Haematol 2001;66(2):83–8. PMID: 11168514.

96. Sierra-Honigmann M.R., Nath A.K., Murakami C. et al. Biological action of leptin as an angiogenic factor. Science 1998;281(5383):1683–6. PMID: 9733517.

97. Ferla R., Bonomi M., Otvos L. Jr, Surmacz E. Glioblastoma-derived leptin induces tube formation and growth of endothelial cells: comparison with VEGF effects. BMC Cancer 2011;11:303. DOI: 10.1186/1471-2407-11-303. PMID: 21771332.

98. Vicennati V., Vottero A., Friedman C., Papanicolaou D.A. Hormonal regulation of interleukin-6 production in human adipocytes. Int J Obes Relat Metab Disord 2002;26(7):905–11. DOI: 10.1038/sj.ijo.0802035. PMID: 12080442.

99. Jakob C., Sterz J., Zavrski I. et al. Angiogenesis in multiple myeloma. Eur J Cancer 2006;42(11):1581–90. PMID: 16797965.

100. Чубукина Ж.В., Бубнова Л.Н., Бессмельцев С.С. и др. Неспецифические факторы защиты и гуморальный иммунитет у больных множественной миеломой. Медицина экстремальных ситуаций 2012;(2):93–8. [Chubukina Zh.V., Bubnova L.N., Bessmeltsev S.S. et al. Nonspecific protection factors and humoral immunity in patients with multiple myeloma. Meditsina extremalnych situatsiy = Medicine of Extreme Situations 2012;(2):93–8. (In Russ.)].

101. Tamura H. Immunopathogenesis and immunotherapy of multiple myeloma. Int J Hematol 2018;107(3):278–85. DOI: 10.1007/s12185-018-2405-7. PMID: 29368256.

102. Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12(4):252–64. DOI: 10.1038/nrc3239. PMID: 22437870.

103. Yousef S., Marvin J., Steinbach M. et al. Immunomodulatory molecule PD-L1 is expressed on malignant plasma cells and myeloma-propagating pre-plasma cells in the bone marrow of multiple myeloma patients. Blood Cancer J 2015;5: e285. DOI: 10.1038/bcj.2015.7. PMID: 25747678.

104. Benson D.M. Jr, Bakan C.E., Mishra A. et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 2010;116(13):2286–94. DOI: 10.1182/blood-2010-02-271874. PMID: 20460501.

105. Rosenblatt J., Glotzbecker B., Mills H. et al. PD-1 blockade by CT-011, antiPD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother 2011;34(5):409–18. DOI: 10.1097/CJI.0b013e31821ca6ce. PMID: 21577144.

106. Ingram J.R., Dougan M., Rashidian M. et al. PD-L1 is an activation-independent marker of brown adipocytes. Nat Commun 2017;8(1):647. DOI: 10.1038/s41467-017-00799-8. PMID: 28935898.

107. Xu L., Shen M., Chen X. et al. Adipocytes affect castration-resistant prostate cancer cells to develop the resistance to cytotoxic action of NK cells with alterations of PD-L1/NKG2D ligand levels in tumor cells. Prostate 2018;78(5):353–64. DOI: 10.1002/pros.23479. PMID: 29330929.

108. Акинфиева О.В., Бубнова Л.Н., Бессмельцев С.С. NKT-клетки: характерные свойства и функциональная значимость для регуляции иммунного ответа. Онкогематология 2010;5(4): 39–47. [Akinfieva O.V., Bubnova L.N., Bessmeltsev S.S. NKT cells: characteristic features and functional significance in the immune response regulation. Onkogematologiya = Oncohematology 2010;5(4):39–47. (In Russ.)].

109. Dhodapkar M.V., Geller M.D., Chang D.H. et al. A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med 2003;197(12):1667–76. DOI: 10.1084/jem.20021650. PMID: 12796469.

110. Jiang F., Liu H., Liu Z. et al. Deficient invariant natural killer T cells had impaired regulation on osteoclastogenesis in myeloma bone disease. J Cell Mol Med 2018;22(5):2706–16. DOI: 10.1111/jcmm.13554. PMID: 29473714.

111. Spanoudakis E., Hu M., Naresh K. et al. Regulation of multiple myeloma survival and progression by CD1d. Blood 2009; 113(11):2498–2507. DOI: 10.1182/blood-2008-06-161281. PMID: 19056691.

112. Favreau M., Menu E., Gaublomme D. et al. Leptin receptor antagonism of iNKT cell function: a novel strategy to combat multiple myeloma. Leukemia 2017;31(12):2678–85. DOI: 10.1038/leu.2017.146. PMID: 28490813.

113. Gimble J.M., Robinson C.E., Wu X., Kelly K.A. The function of adipocytes in the bone marrow stroma: an update. Bone 1996;19(5):421–8. PMID: 8922639.

114. Sica A., Larghi P., Mancino A. et al. Macrophage polarization in tumour progression. Semin Cancer Biol 2008;18(5):349–55. DOI: 10.1016/j.semcancer. 2008.03.004. PMID: 18467122.

115. Barrett J.P., Minogue A.M., Falvey A., Lynch M.A. Involvement of IGF-1 and Akt in M1/M2 activation state in bone marrow-derived macrophages. Exp Cell Res 2015;335(2):258–68. DOI: 10.1016/j.yexcr.2015.05.015. PMID: 26022664.

116. Тухватулин А.И., Логунов Д.Ю., Щербинин Д.Н. и др. Toll-подобные рецепторы и их адапторные молекулы. Биохимия 2010;75(9):1224–43. [Tukhvatulin A.I., Logunov D.Yu., Shcherbinin D.N. et al. Toll-like receptors and their adapter molecules. Biokhimiya = Biochemistry 2010;75(9):1224–43. (In Russ.)].

117. Wight T.N., Kinsella M.G., Evanko S.P. et al. Versican and the regulation of cell phenotype in disease. Biochim Biophys Acta 2014;1840(8):2441–51. DOI: 10.1016/j.bbagen.2013.12.028. PMID: 24401530.

118. Andersson-Sjöland A., Hallgren O., Rolandsson S. et al. Versican in inflammation and tissue remodeling: the impact on lung disorders. Glycobiology 2015;25(3):243–51. DOI: 10.1093/glycob/cwu120. PMID: 25371494.

119. Theocharis A.D., Karamanos N.K. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. Matrix Biol 2019;75–76:220–59. DOI: 10.1016/j.matbio.2017.10.008. PMID: 29128506.

120. Hope C., Ollar S.J., Heninger E. et al. TPL2 kinase regulates the inflammatory milieu of the myeloma niche. Blood 2014;123(21):3305–15. DOI: 10.1182/blood-2014-02-554071. PMID: 24723682.

121. Fletcher S.J., Sacca P.A., PistoneCreydt M. et al. Human breast adipose tissue: characterization of factors that change during tumor progression in human breast cancer. J Exp Clin Cancer Res 2017;36(1):26. DOI: 10.1186/s13046-017-0494-4. PMID: 28173833.

122. Zizola C.F., Julianelli V., Bertolesi G. et al. Role of versican and hyaluronan in the differentiation of 3T3-L1 cells into preadipocytes and mature adipocytes. Matrix Biol 2007;26(6):419–30. DOI: 10.1016/j.matbio.2007.04.002. PMID: 17513099.

123. Beider K., Bitner H., Leiba M. et al. Multiple myeloma cells recruit tumorsupportive macrophages through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype. Oncotarget 2014;5(22):11283–96. DOI: 10.18632/oncotarget.2207. PMID: 25526031.

124. Klein-Wieringa I.R., Andersen S.N., Kwekkeboom J.C. et al. Adipocytes modulate the phenotype of human macrophages through secreted lipids. J Immunol 2013;191(3):1356–63. DOI: 10.4049/jimmunol.1203074. PMID: 23817431.

125. Bronte V., Brandau S., Chen S.H. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 2016;7:12150. DOI: 10.1038/ncomms12150. PMID: 27381735.

126. Malek E., de Lima M., Letterio J.J. et al. Myeloid-derived suppressor cells: The green light for myeloma immune escape. Blood Rev 2016;30(5):341–8. DOI: 10.1016/j.blre.2016.04.002. PMID: 27132116.

127. Favaloro J., Liyadipitiya T., Brown R. et al. Myeloid derived suppressor cells are numerically, functionally and phenotypically different in patients with multiple myeloma. Leuk Lymphoma 2014;55(12): 2893–900. DOI: 10.3109/10428194.2014.904511. PMID: 24625328.

128. Okwan-Duodu D., Umpierrez G.E., Brawley O.W., Diaz R. Obesity-driven inflammation and cancer risk: role of myeloid derived suppressor cells and alternately activated macrophages. Am J Cancer Res 2013;3(1):21–33. PMID: 23359288.

129. Ramachandran I.R., Martner A., Pisklakova A. et al. Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J Immunol 2013;190(7):3815–23. DOI: 10.4049/jimmunol.1203373. PMID: 23460744.

130. Görgün G.T., Whitehill G., Anderson J.L. et al. Tumor-promoting immunesuppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood 2013;121(15):2975–87. DOI: 10.1182/blood-2012-08-448548. PMID: 23321256.

131. Wang Z., Zhang L., Wang H. et al. Tumorinduced CD14+HLA-DR(-/low) myeloid-derived suppressor cells correlate with tumor progression and outcome of therapy in multiple myeloma patients. Cancer Immunol Immunother 2015;64(3):389–99. DOI: 10.1007/s00262-014-1646-4. PMID: 25548095.

132. Clements V.K., Long T., Long R. et al. Frontline Science: High fat diet and leptin promote tumor progression by inducing myeloid-derived suppressor cells. J Leukoc Biol 2018;103(3):395–407. DOI: 10.1002/JLB.4HI0517-210R. PMID: 29345342.

133. Sade-Feldman M., Kanterman J., IshShalom E. et al. Tumor necrosis factor-α blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity 2013;38(3):541–54. DOI: 10.1016/j.immuni.2013.02.007. PMID: 23477736.

134. Marigo I., Bosio E., Solito S. et al. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 2010;32(6):790–802. DOI: 10.1016/j.immuni.2010.05.010. PMID: 20605485.

135. Song X., Krelin Y., Dvorkin T. et al. CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells. J Immunol 2005;175(12):8200–8. PMID: 16339559.

136. Donohoe C.L., Lysaght J., O’Sullivan J., Reynolds J.V. Emerging concepts linking obesity with the hallmarks of cancer. Trends Endocrinol Metab 2017;28(1):46–62. DOI: 10.1016/j.tem.2016.08.004. PMID: 27633129.


Рецензия

Для цитирования:


Фильченков A.A. Адипоциты костного мозга при множественной миеломе. Онкогематология. 2019;14(1):60-75. https://doi.org/10.17650/1818-8346-2019-14-1-60-75

For citation:


Philchenkov A.A. Bone marrow adipocytes and multiple myeloma. Oncohematology. 2019;14(1):60-75. (In Russ.) https://doi.org/10.17650/1818-8346-2019-14-1-60-75

Просмотров: 9874


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)