Preview

Oncohematology

Advanced search

CD-19-directed immunotherapy resistance mechanisms of B-precursor acute lymphoblastic leukemia

https://doi.org/10.17650/1818-8346-2019-13-4-27-36

Abstract

Immunotherapy is the most rapidly evolving field in clinical malignant hematology. Targeting of the B-lineage surface antigen CD19 in B-lineage acute lymphoblastic leukemia and B-cell lymphoma is a story of great success. Recently two approaches of CD19 immunotargeting were approved for clinical application: CD3 × CD19 bi-specific T-cell engager blinatumomab and CD19 chimeric antigen receptor (CAR) Tcells. Both approaches demonstrated an unprecedented activity in a cohort of patients with relapsed and refractory B-cell leukemia and lymphoma both in the adult and pediatric population. Early clinical research has showed that tumors are able to escape the immunological control and become resistant to the immune attack. Mechanisms of the tumor immune escape are being actively studied and include diverse pathways, such as alternative splicing of CD19 and immunosuppressive tumor microenvironment. Current review briefly summarizes data regarding the mechanisms of CD19-positive leukemia resistance to CD19 immune targeting and discusses potential approaches to overcome it.

About the Authors

E. V. Glukhanyuk
Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology
Russian Federation
1 Samory Mashela St., Moscow 117997


A. V. Stepanov
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
Russian Federation
16/10 Miklukho-Maklaya St., Moscow 117997


A. M. Popov
Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology
Russian Federation
1 Samory Mashela St., Moscow 117997


M. A. Maschan
Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology
Russian Federation
1 Samory Mashela St., Moscow 117997


References

1. Chong E.A., Melenhorst J.J., Lacey S.F. et al. PD-1 blockade modulates chimeric antigen receptor (CAR) – modified Tcells: refueling the CAR. Blood 2017;129(8):1039–42. DOI: 10.1182/blood-2016-09-738245. PMID: 28031179.

2. Kantarjian H.M., Stein A.S., Bargou R.C. et al. Blinatumomab treatment of older adults with relapsed/refractory B-precursor acute lymphoblastic leukemia: results from 2 phase 2 studies. Cancer 2016;122(14):2178–85. DOI: 10.1002/cncr.30031. PMID: 27143254.

3.

4. Von Stackelberg A., Locatelli F., Zugmaier G. et al. Phase I/phase II study of blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. J Clin Oncol 2016;34(36):4381–9. DOI: 10.1200/JCO.2016.67.3301. PMID: 27998223.

5. Wang M. CAR T-cell therapy effective in B acute lymphoblastic leukaemia. Lancet Oncol 2017;18(6):e314. DOI: 10.1016/S1470-2045(17)30364-9. PMID: 28528746.

6. Zugmaier G., Klinger M., Schmidt M., Subklewe M. Clinical overview of antiCD19 BiTE® and ex vivo data from antiCD33 BiTE® as examples for retargeting T-cells in hematologic malignancies. Mol Immunol 2015;67(2 Pt A):58–66. DOI: 10.1016/j.molimm.2015.02.033. PMID: 25883042.

7. Ruella M., Maus M.V. Catch me if you can: leukemia escape after CD19-directed T-cell immunotherapies. Comput Struct Biotechnol J 2016;14:357–62. DOI: 10.1016/j.csbj.2016.09.003. PMID: 27761200.

8. Weiland J., Pal D., Case M. et al. BCPALL blasts are not dependent on CD19 expression for leukaemic maintenance. Leukemia 2016;30(9):1920–3. DOI: 10.1038/leu.2016.64. PMID: 27055873.

9. Mejstríková E., Hrusak O., Borowitz M.J. et al. CD19-negative relapse of pediatric B-cell precursor acute lymphoblastic leukemia following blinatumomab treatment. Blood Cancer J 2017;7(12):659. DOI: 10.1038/s41408-017-0023-x. PMID: 29259173.

10. Wilkie S., Burbridge S.E., Chiapero-Stanke L. et al. Selective expansion of chimeric antigen receptor-targeted Tcells with potent effector function using interleukin-4. J Biol Chem 2010;285(33): 25538–44. DOI: 10.1074/jbc.M110.127951. PMID: 20562098.

11. Glukhanyuk E.V., Illarionova O.I., Kashpor S.A. et al. Changes in CD19 expression after blinatumomab treatment in pediatric patients with relapsed/ refractory B-lineage acute lymphoblastic leukemia. Voprosy gematologii/onkologii i immunopatologii v pediatrii = Pediatric Hematology/Oncology and Immunopathology 2017;16(4):21–6. (In Russ.). DOI: 10.24287/1726-1708-2017-16-4-21-26.

12. Illarionova O., Gluhanyuk E., Kashpor S., et al. Changes in leukemic blasts CD19 expression in children with relapsed/ refractory B-cell precursor ALL treated with blinatumomab. Blood 2017;130(Suppl. 1):3991.

13. Cherian S., Miller V., McCullouch V. et al. A novel flow cytometric assay for detection of residual disease in patients with B-lymphoblastic leukemia/lymphoma post anti-CD19 therapy. Cytometry B Clin Cytom 2016;94(1):112–20. DOI: 10.1002/cyto.b.21482. PMID: 27598971.

14. Wang X., Sénéchal B., Curran K.J. et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 2018;378(5):449–59. DOI: 10.1056/NEJMoa1709919. PMID: 29385376.

15. Fraietta J.A., Lacey S.F., Orlando E.J. et al. Determinants of response and resistance to CD19 chimeric antigen receptor(CAR) T-cell therapy of chronic lymphocytic leukemia. Nat Med 2018;24(5):563–71. DOI: 10.1038/s41591-018-0010-1. PMID: 29713085.

16. Zhang L., Song Y., Liu D. CD19 CAR-Tcell therapy for relapsed/refractory acute lymphoblastic leukemia: factors affecting toxicities and long-term efficacies. J Hematol Oncol 2018;11(1):41–5. DOI: 10.1186/s13045-018-0593-5. PMID: 29544528.

17. Nägele V., Kratzer A., Zugmaier G. et al. Changes in clinical laboratory parameters and pharmacodynamic markers in response to blinatumomab treatment of patients with relapsed/refractory ALL. Exp Hematol Oncol 2017;6(1):14. DOI: 10.1186/s40164-017-0074-5. PMID: 28533941.

18. Duell J., Dittrich M., Bedke T. et al. Frequency of regulatory T-cells determines the outcome of the T-cellengaging antibody blinatumomab in patients with B-precursor ALL. Leukemia 2017;31(10):2181–90. DOI: 10.1038/leu.2017.41. PMID: 28119525.

19. Sotillo E., Barrett D.M., Black K.L. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 2015;5(12):1282–95. DOI: 10.1158/2159-8290.CD-15-1020. PMID: 26516065.

20. Fischer J., Paret C., Malki E. et al. CD19 isoforms enabling resistance to CART-19 immunotherapy are expressed in B-ALL patients at initial diagnosis. J Immunother 2017;40(5):187–95. DOI: 10.1097/CJI.0000000000000169. PMID: 28441264.

21. Braig F., Brandt A., Goebeler M. et al. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood 2017;129(1):100–4. DOI: 10.1182/blood-2016-05-718395. PMID: 27784674.

22. Rayes A., McMasters R.L., O’Brien M.M. Lineage switch in MLL-rearranged infant leukemia following CD19-directed therapy. Pediatr Blood Cancer 2016;63(6):1113–5. DOI: 10.1002/pbc.25953. PMID: 26914337.

23. Gardner R., Wu D., Cherian S. et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLLrearranged B-ALL from CD19 CAR-Tcell therapy. Blood 2016;127(20):2406–10. DOI: 10.1182/blood-2015-08-665547. PMID: 26907630.

24. Nagel I., Bartels M., Duell J. et al. Hematopoietic stem cell involvement in BCR-ABL1 – positive ALL as a potential mechanism of resistance to blinatumomab therapy. Blood 2017;130(18):2027–32. DOI: 10.1182/blood-2017-05-782888. PMID: 28827408.

25. Fielding A.K., Ph D., Schuh A.C., Dombret H. et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med 2017;376(9):836–47. DOI: 10.1056/NEJMoa1609783. PMID: 28249141.

26. Topp M.S., Stelljes M., Zugmaier G. et al. Blinatumomab retreatment after relapse in patients with relapsed/refractory Bprecursor acute lymphoblastic leukemia. Leukemia 2018;32(2):562–5. DOI: 10.1038/leu.2017.306. PMID: 28990581.

27. Ruella M., Barrett D.M., Kenderian S.S. et al. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19directed immunotherapies. J Clin Invest 2016;126(10):3814–26. DOI: 10.1172/JCI87366. MID: 27571406.

28. Ueda M., de Lima M., Caimi P. et al. Concurrent blinatumomab and donor lymphocyte infusions for treatment of relapsed pre-B-cell ALL after allogeneic hematopoietic cell transplant. Bone Marrow Transplant 2016;51(9):1253–5. DOI: 10.1038/bmt.2016.104. PMID: 27088374.

29. Qin H., Haso W., Nguyen S.M., Fry T.J. Preclinical development of bispecific chimeric antigen receptor targeting both CD19 and CD22. Blood 2015;126(23):4427.

30. Zah E., Lin M.Y., Silva-Benedict A. et al. T-cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B-cells. Cancer Immunol Res 2016;4(6):498–508. DOI: 10.1158/2326-6066.CIR-15-0231. PMID: 27059623.

31. Spiess C., Zhai Q., Carter P.J. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol Immunol 2015;67(2 Pt A):95–106. DOI: 10.1016/j.molimm.2015.01.003. PMID: 25637431.

32. Bachanova V., Frankel A.E., Cao Q. et al. Phase I study of a bispecific liganddirected toxin targeting CD22 and CD19 (DT2219) for refractory B-cell malignancies. Clin Cancer Res 2015;21(6):1267–72. DOI: 10.1158/10780432.CCR-14-2877. PMID: 25770294.

33. Kantarjian H.M., DeAngelo D.J., Stelljes M. et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med 2016;375(8):740–53. DOI: 10.1056/NEJMoa1509277. PMID: 27292104.

34. Fry T.J., Stetler-Stevenson M., Shah N.N. et al. Clinical activity and persistence of anti-CD22 chimeric antigen receptor in children and young adults with relapsed/refractory acute lymphoblastic leukemia (ALL). Blood 2015;126(23):1324.

35. Köhnke T., Krupka C., Tischer J. et al. Increase of PD-L1 expressing B-precursor ALL cells in a patient resistant to the CD19/CD3-bispecific T-cell engager antibody blinatumomab. J Hematol Oncol 2015;8:111. DOI: 10.1186/s13045-015-0213-6. PMID: 26449653.

36. Assi R., Kantarjian H., Short N.J. et al. Safety and efficacy of blinatumomab in combination with a tyrosine kinase inhibitor for the treatment of relapsed philadelphia chromosome-positive leukemia. Clin Lymphoma Myeloma Leuk 2017;17(12):897–901. DOI: 10.1016/j.clml.2017.08.101. PMID: 28927784.

37. Sokolov A.N., Parovichnikova E.N., Troitskaya V.V. et al. Blinatumomab + tyrosine kinase inhibitors with no chemotherapy in BCR-ABL-positive or IKZF1-deleted or FLT3-ITD-positive relapsedre/fractory acute lymphoblastic leukemia patients high molecular remission rate and toxicity profile. Blood 2017;130(Suppl 1):3884.

38. Lacy M.Q., Jacobus S., Blood E.A. et al. Phase II study of interleukin-12 for treatment of plateau phase multiple myeloma (E1A96): a trial of the Eastern Cooperative Oncology Group. Leuk Res 2009;33(11):1485–9. DOI: 10.1016/j.leukres.2009.01.020. PMID: 19243818.

39. Jaspers J.E., Brentjens R.J. Development of CAR T-cells designed to improve antitumor efficacy and safety. Pharmacol Ther 2017;178:83–91. DOI: 10.1016/j. pharmthera.2017.03.012. PMID: 28342824.

40. Chong E.A., Melenhorst J.J., Lacey S.F. et al. PD-1 blockade modulates chimeric antigen receptor (CAR) – modified Tcells: refueling the CAR. Blood 2017;129(8):1039–42. DOI: 10.1182/blood-2016-09-738245. PMID: 28031179.

41.


Review

For citations:


Glukhanyuk E.V., Stepanov A.V., Popov A.M., Maschan M.A. CD-19-directed immunotherapy resistance mechanisms of B-precursor acute lymphoblastic leukemia. Oncohematology. 2018;13(4):27-36. (In Russ.) https://doi.org/10.17650/1818-8346-2019-13-4-27-36

Views: 10064


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)