Preview

Oncohematology

Advanced search

Physiological and pathophysiological aspects of blood platelet activation through CLEC-2 receptor

https://doi.org/10.17650/1818-8346-2018-13-3-83-90

Abstract

Platelet activating receptor CLEC-2 has been identified on platelet surface a decade ago. The only confirmed endogenous CLEC-2 agonist is podoplanin. Podoplanin is a transmembrane protein expressed by lymphatic endothelial cells, reticular fibroblastic cells in lymph nodes, kidney podocytes and by cells of certain tumors. Association of CLEC-2 with podoplanin is involved in processes of embryonic development (blood-lymph vessel separation and angiogenesis), maintaining of vascular integrity of small vessels during inflammation and prevention of blood-lymphatic mixing in high endothelial venules. However, CLEC-2 and podoplanin are contributing to tumor metastasis progression, Salmonella sepsis and deep-vein thrombosis. This makes CLEC-2 and podoplanin a perspective target for pharmacological treatment. Aspirin and Ibrutinib are considered to be perspective for abrogation of podoplanin-induced platelet activation via CLEC-2. The present review discusses already known pathological and physiological roles of CLEC-2 and possibilities of a targeted therapy for CLEC-2 associated diseases.

About the Authors

A. A. Martyanov
Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology; Lomonosov Moscow State University, Faculty of Physics; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences.
Russian Federation

1 Samory Mashela St., Moscow 117198.

1, bldg. 2 Leninskie Gory, Moscow 119991.

4 Kosygina St., Moscow 119991.




V. N. Kaneva
Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology; Lomonosov Moscow State University, Faculty of Physics.
Russian Federation

1 Samory Mashela St., Moscow 117198.

1, bldg. 2 Leninskie Gory, Moscow 119991.



M. A. Panteleev
Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology; Lomonosov Moscow State University, Faculty of Physics; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University), Faculty of Biological and Medical Physics.
Russian Federation

1 Samory Mashela St., Moscow 117198.

1, bldg. 2 Leninskie Gory, Moscow 119991.

4 Kosygina St., Moscow 119991. 

9 Institutskiy Pereulok, Dolgoprudnyi 141700.



A. N. Sveshnikova
Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology; Lomonosov Moscow State University, Faculty of Physics; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences.
Russian Federation

1 Samory Mashela St., Moscow 117198.

1, bldg. 2 Leninskie Gory, Moscow 119991.

4 Kosygina St., Moscow 119991. 



References

1. Kamkin A., Kamenskiy A. Fundamental and Clinical Physiology. Moscow: Akademia, 2004 (In Russ.).

2. Canobbio I., Balduini C., Torti M. Signalling through the platelet glycoprotein Ib-V–IX complex. Cell Signal 2004;16(12):1329–44. DOI: 10.1016/j.cellsig.2004.05.008. PMID: 15381249.

3. Payrastre B., Missy K., Trumel C. et al. The integrin alpha IIb/beta3 in human platelet signal transduction. Biochem Pharmacol 2000;60(8):1069–74. DOI: 10.1016/S0006-2952(00)00417-2. PMID: 11007943.

4. Coxon C.H., Geer M.J., Senis Y.A. ITIM receptors: More than just inhibitors of platelet activation. Blood 2017;129(26):3407–18. DOI: 10.1182/blood-2016-12-720185. PMID: 28465343.

5. Du X. Self-control of platelets: a new ITIM story. Blood 2014;124(15):2322–3. DOI: 10.1182/blood-2014-08-593830. PMID: 25301334.

6. Watson S.P., Asazuma N., Atkinson B. et al. The Role of ITAM- and ITIM-coupled Receptors in Platelet Activation by Collagen. Thromb Haemost 2001;86(1):276–88. PMID: 11487016.

7. Colonna M., Samaridis J., Angman L. Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur J Immunol 2000;30(2):697–704. DOI: 10.1002/1521-4141(200002) 30:2<697::AID-IMMU697>3.0.CO;2-M. PMID: 10671229.

8. Mourão-Sá D., Robinson M.J., Zelenay S. et al. CLEC-2 signaling via Syk in myeloid cells can regulate inflammatory responses. Eur J Immunol 2011;41(10):3040–53. DOI: 10.1002/eji.201141641. PMID: 21728173.

9. Suzuki-Inoue K., Osada M., Ozaki Y. Physiologic and pathophysiologic roles of interaction between C-type lectin-like receptor 2 and podoplanin: partners from in utero to adulthood. J Thromb Haemost 2017;15(2):219–29. DOI: 10.1111/jth.13590. PMID: 27960039.

10. Astarita J.L., Acton S.E., Turley S.J. Podoplanin: Emerging functions in development, the immune system, and cancer. Front Immunol 2012;3:283. DOI: 10.3389/fimmu.2012.00283. PMID: 22988448.

11. Haining E.J., Cherpokova D., Wolf K. et al. CLEC 2 contributes to hemostasis independently of classical hemITAM signaling in mice. Blood 2017;130(20):2224–8. DOI: 10.1182/blood-2017-03-771907. PMID: 28835437.

12. Takemoto A., Miyata K., Fujita N. Platelet-activating factor podoplanin: from discovery to drug development. Cancer Metastasis Rev 2017;36(2):225–34. DOI: 10.1007/s10555-017-9672-2. PMID: 28674748.

13. Suzuki-Inoue K., Osada M., Ozaki Y. Physiologic and pathophysiologic roles of interaction between C-type lectin-like receptor 2 and podoplanin: partners from in utero to adulthood. J Thromb Haemost 2017;15(2):219–29. DOI: 10.1111/jth.13590. PMID: 27960039.

14. Shirai T., Inoue O., Tamura S. et al. Ctype lectin-like receptor 2 promotes hematogenous tumor metastasis and prothrombotic state in tumor-bearing mice. J Thromb Haemost 2017;15(3):513–25. DOI: 10.1111/jth.13604. PMID: 28028907.

15. Hitchcock J.R., Cook C.N., Bobat S. et al. Cunningham, Inflammation drives thrombosis after Salmonella infection via CLEC-2 on platelets. J Clin Invest 2015;125(12):4429–46. DOI: 10.1172/JCI79070. PMID: 26571395.

16. Payne H., Ponomaryov T., Watson S.P., Brill A. Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis. Blood 2017;129(14):2013–20. DOI: 10.1182/blood-2016-09-742999. PMID: 28104688.

17. Kato Y., Fujita N., Kunita A. et al. Molecular Identification of Aggrus/T1α as a Platelet Aggregation-inducing Factor Expressed in Colorectal Tumors. J Biol Chem 2003;278(51):51599–605. DOI: 10.1074/jbc.M309935200. PMID: 14522983.

18. Kaneko M.K., Kato Y., Kitano T., Osawa M. Conservation of a platelet activating domain of Aggrus/podoplanin as a platelet aggregation-inducing factor. Gene 2006;378:52–7. DOI: 10.1016/j.gene.2006.04.023. PMID: 16766141.

19. Pollitt A.Y., Poulter N.S., Gitz E. et al. Syk and src family kinases regulate c-type lectin receptor 2 (clec-2)-mediated clustering of podoplanin and platelet adhesion to lymphatic endothelial cells. J Biol Chem 2014;289(52):35695–710. DOI: 10.1074/jbc.M114.584284. PMID: 25368330.

20. Shin Y., Morita T. Rhodocytin, a functional novel platelet agonist belonging to the heterodimeric C-type lectin family, induces platelet aggregation independently of glycoprotein Ib. Biochem Biophys Res Commun 1998; 245(3):741–5. DOI: 10.1006/bbrc.1998.8516. PMID: 9588185.

21. Suzuki-Inoue K., Kato Y., Inoue O. et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem 2007;282(36):25993–26001. DOI: 10.1074/jbc.M702327200. PMID: 17616532.

22. Watson A.A., Eble J.A., O’Callaghan C.A. Crystal structure of rhodocytin, a ligand for the platelet-activating receptor CLEC-2. Protein Sci 2008;17(9):1611–6. DOI: 10.1110/ps.035568.108. PMID: 18583525.

23. Nagae M., Morita-Matsumoto K., Kato M. et al. A platform of C-type lectin-like receptor CLEC-2 for binding O-glycosylated podoplanin and nonglycosylated rhodocytin. Structure 2014;22(12):1711–21. DOI: 10.1016/j.str.2014.09.009. PMID: 25458834.

24. Watson A.A., Christou C.M., James J.R. et al. The platelet receptor CLEC-2 is active as a dimer. Biochemistry 2009;48(46):10988–96. DOI: 10.1021/bi901427d. PMID: 19824697.

25. Manne B.K., Getz T.M., Hughes C.E. et al. Fucoidan is a novel platelet agonist for the C-type lectin-like receptor 2 (CLEC-2). J Biol Chem 2013;288(11):7717–26. DOI: 10.1074/jbc.M112.424473. PMID: 23341451.

26. Hughes C.E., Sinha U., Pandey A. et al. Critical role for an acidic amino acid region in platelet signaling by the HemITAM (hemi-immunoreceptor tyrosine-based activation motif) containing receptor CLEC-2 (C-type lectin receptor-2). J Biol Chem 2013;288(7):5127–35. DOI: 10.1074/jbc.M112.411462. PMID: 23264619.

27. Hughes C.E., Finney B.A., Koentgen F. et al. The N-terminal SH2 domain of Syk is required for (hem) ITAM, but not integrin , signaling in mouse platelets. Blood 2015;125(1):144–55. DOI: 10.1182/blood-2014-05-579375. PMID: 25352128.

28. Pollitt A.Y., Grygielska B., Leblond B. et al. Phosphorylation of CLEC-2 is dependent on lipid rafts, actin polymerization, secondary mediators, and Rac. Blood 2010;115914):2938–2946. DOI: 10.1182/blood-2009-12-257212. PMID: 20154214.

29. Hughes C.E., Pollitt A.Y., Mori J. et al. CLEC-2 activates Syk through dimerization. Blood 2010;115(14):2947–55. DOI: 10.1182/blood-2009-08-237834. PMID: 20154219.

30. Badolia R., Inamdar V., Manne B.K. et al. Gq pathway regulates proximal C-type lectin-like receptor-2(CLEC-2) signaling in platelets. J Biol Chem 2017; 292(35):14516–31. DOI: 10.1074/jbc.M117.791012. PMID: 28705934.

31. Manne B.K., Badolia R., Dangelmaier C. et al. Distinct pathways regulate Syk protein activation downstream of immune tyrosine activation motif (ITAM) and hemITAM receptors in platelets. J Biol Chem 2015;290(18):11557–68. DOI: 10.1074/jbc.M114.629527. PMID: 25767114.

32. Gibbins J.M., Briddon S., Shutes A. et al. The p85 subunit of phosphatidylinositol 3-kinase associates with the Fc receptor gamma chain and linker for activitor of T cells (LAT) in platelets stimulated by collagen and convulxin. J Biol Chem 1998;273(51):34437–43. DOI: 10.1074/jbc.273.51.34437. PMID: 9852111.

33. Manne B.K., Badolia R., Dangelmaier C.A., Kunapuli S.P. C-type lectin like receptor 2 (CLEC-2) signals independently of lipid raft microdomains in platelets. Biochem Pharmacol 2015;93(2):163–70. DOI: 10.1016/j.bcp.2014.11.005. PMID: 25462818.

34. Akinleye A., Chen Y., Mukhi N. et al. Ibrutinib and novel BTK inhibitors in cli nical development. J Hematol Oncol 2013;6:59. DOI: 10.1186/1756-8722-6-59. PMID:

35.


Review

For citations:


Martyanov A.A., Kaneva V.N., Panteleev M.A., Sveshnikova A.N. Physiological and pathophysiological aspects of blood platelet activation through CLEC-2 receptor. Oncohematology. 2018;13(3):83-90. (In Russ.) https://doi.org/10.17650/1818-8346-2018-13-3-83-90

Views: 9755


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)