Preview

Онкогематология

Расширенный поиск

Физиология и патология внеклеточных везикул

https://doi.org/10.17650/1818-8346-2017-12-1-62-70

Аннотация

Этот год юбилейный: 50 лет назад была опубликована первая работа, сообщающая об открытии микровезикул плазмы крови.
Изначально считавшиеся просто обломками клеток, «тромбоцитарной пылью», внеклеточные везикулы в настоящее время привлекают внимание биохимиков, биофизиков, врачей, фармакологов всего мира. Они гетерогенны по устройству и клеточному происхождению, несут на себе и в себе разнообразные биомолекулы и обладают широким спектром биологических активностей (прокоагулянтную, регенеративную, иммуномодулирующую и др.), которые играют важную роль в патофизиологии широкого круга заболеваний и состояний – от инфаркта, травмы и беременности до реакции «трансплантат против хозяина». Сами везикулы в качестве лекарств и их носителей, равно как и влияющие на них препараты, представляют собой объект исследований и разработок, который быстро набирает популярность. Настоящий обзор посвящен современным представлениям о внеклеточных везикулах и их практическом применении.

Об авторах

М. А. Пантелеев
ФГБУ «Национальный научно-практический центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН «Центр теоретических проблем физико-химической фармакологии РАН»; ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»; ФГАУО ВО «Московский физико-технический институт (государственный университет)»;
Россия

Россия, 117997 Москва, ул. Саморы Машела, 1;

Россия, 119991 Москва, Ленинский просп., 38А, корп. 1;

физический факультет 
Россия, 119991 Москва, Ленинские горы, 1, стр. 2;

факультет биологической и медицинской физики
Россия, 141700 Московская обл., г. Долгопрудный, Институтский пер., 9 



А. А. Абаева
ФГБУН «Центр теоретических проблем физико-химической фармакологии РАН»;
Россия

Россия, 119991 Москва, Ленинский просп., 38А, корп. 1;



Д. Ю. Нечипуренко
ФГБУ «Национальный научно-практический центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН «Центр теоретических проблем физико-химической фармакологии РАН»; ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»;
Россия

Россия, 117997 Москва, ул. Саморы Машела, 1;

Россия, 119991 Москва, Ленинский просп., 38А, корп. 1;

физический факультет 
Россия, 119991 Москва, Ленинские горы, 1, стр. 2;



С. И. Обыденный
ФГБУ «Национальный научно-практический центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН «Центр теоретических проблем физико-химической фармакологии РАН»;
Россия

Россия, 117997 Москва, ул. Саморы Машела, 1;

Россия, 119991 Москва, Ленинский просп., 38А, корп. 1;



А. Н. Свешникова
ФГБУ «Национальный научно-практический центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН «Центр теоретических проблем физико-химической фармакологии РАН»; ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»;
Россия

Россия, 117997 Москва, ул. Саморы Машела, 1;

Россия, 119991 Москва, Ленинский просп., 38А, корп. 1;

физический факультет 
Россия, 119991 Москва, Ленинские горы, 1, стр. 2;



А. М. Шибеко
ФГБУН «Центр теоретических проблем физико-химической фармакологии РАН»;
Россия
Россия, 119991 Москва, Ленинский просп., 38А, корп. 1;


Список литературы

1. Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol 1967;13:269–88. 10.1111/j.1365-2141.1967.tb08741.x. PMID: 6025241.

2. Panteleev M.A., Dashkevich N.M., Ataullakhanov F.I. Hemostasis and thrombosis beyond biochemistry: roles of geometry, flow and diffusion. Thromb Res 2015;136:699–711. DOI: 10.1016/j.thromres.2015.07.025. PMID: 26278966.

3. Panteleev M.A., Saenko E.L., Ananyeva N.M., Ataullakhanov F.I. Kinetics of Factor X activation by the membrane-bound complex of Factor IXa and Factor VIIIa. Biochem J 2004;381:779–94. DOI: 10.1042/BJ20031748. PMID: 15104540.

4. Podoplelova N.A., Sveshnikova A.N., Kotova Y.N. et al. Coagulation factors boundto procoagulant platelets concentrate in cap structures to promote clotting. Blood 2016;128:1745–55. DOI: 10.1182/blood-2016-02-696898. PMID: 27432876.

5. Panteleev M.A., Ananyeva N.M., Greco N.J. et al. Two subpopulations of thrombin-activated platelets differ in their binding of the components of the intrinsic factor Xactivating complex. J Thromb Haemost 2005;3:2545–53. DOI: 10.1111/j.1538-7836.2005.01616.x. PMID: 16241952.

6. Abaeva A.A., Canault M., Kotova Y.N. et al. Procoagulant platelets form an alpha-granule protein-covered “cap” on their surface that promotes their attachment to aggregates. J Biol Chem 2013;288:29621–32. DOI: 10.1074/jbc.M113.474163. PMID: 23995838.

7. Hargett L.A., Bauer N.N. On the origin of microparticles: From “platelet dust” to mediators of intercellular communication. Pulm Circ 2013;3:329–40. DOI: 10.4103/2045-8932.114760. PMID: 24015332.

8. Ferru E., Pantaleo A., Carta F. et al. Thalassemic erythrocytes release microparticles loaded with hemichromes by redox activation of p72Syk kinase. Haematologica 2014;99:570–8. DOI: 10.3324/haematol.2013.084533. PMID: 24038029.

9. Melki I., Tessandier N., Zufferey A., Boilard E. Platelet microvesicles in health and disease. Platelets 2017;19:1–8. DOI: 10.1080/09537104.2016.1265924. PMID: 28102737.

10. Herring J.M., McMichael M.A., Smith S.A. Microparticles in health and disease. J Vet Intern Med 2013;27:1020–33. DOI: 10.1111/jvim.12128. PMID: 24038029.

11. Dostert G., Mesure B., Menu P., Velot E. How Do Mesenchymal Stem Cells Influence or Are Influenced by Microenvironment through Extracellular Vesicles Communication? Front Cell Dev Biol 2017;5:6. DOI: 10.3389/fcell.2017.00006. PMID: 28224125.

12. Tamir A., Sorrentino S., Motahedeh S. et al. The macromolecular architecture of plateletderived microparticles. J Struct Biol 2016;193: 181–7. DOI: 10.1016/j.jsb.2015.12.013. PMID: 26767592.

13. Lipets E., Vlasova O., Urnova E. et al. Circulating contact-pathway-activating microparticles together with factors IXa and XIa induce spontaneous clotting in plasma of hematology and cardiologic patients. PLoS One 2014;9: e87692. DOI: 10.1371/journal.pone.0087692. PMID: 24498168.

14. Sinauridze E.I., Kireev D.A., Popenko N.Y. et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007;97:425–34. DOI: 10.1160/TH06-06-0313. PMID: 17334510.

15. Cocucci E., Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 2015;25:364–72. DOI: 10.1016/j.tcb.2015.01.004.

16. Raposo G., Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013;200(4):373–83. DOI: 10.1083/jcb.201211138. PMID: 23420871.

17. Arraud N., Linares R., Tan S. et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemos 2014;12:614–27. DOI: 10.1111/jth.12554. PMID: 24618123.

18. Sarkar S., Dasgupta A.K. Microparticle of drug and nanoparticle: a biosynthetic route. Pharmacol Res Perspect 2015;3: e00188. DOI: 10.1002/prp2.188. PMID: 26516592.

19. Loyer X., Vion A.C., Tedgui A., Boulanger C.M. Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res 2014;114:345–53. DOI: 10.1161/CIRCRESAHA.113.300858. PMID: 24436430.

20. Schindler S.M., Little J.P., Klegeris A. Microparticles: a new perspective in central nervous system disorders. Biomed Res Int 2014; 2014:756327. DOI: 10.1155/2014/756327. PMID: 24860829.

21. Agouni A., Andriantsitohaina R., Marti - nez M.C. Microparticles as biomarkers of vascular dysfunction in metabolic syndrome and its individual components. Curr Vasc Pharmacol 2014;12:483–92. PMID: 24846237.

22. Gonzalez E., Falcon-Perez J.M. Cell-derived extracellular vesicles as a platform to identify low-invasive disease biomarkers. Expert Rev Mol Diag 2015;15:907–23. DOI: 10.1586/14737159.2015.1043272. PMID: 25948243.

23. Royo F., Falcon-Perez J.M. Liver extracellular vesicles in health and disease. J Extracell Vesicles 2012;11:1. DOI: 10.3402/jev.v1i0.18825. PMID: 24009882.

24. Aharon A., Brenner B. Placenta-derived microparticles. Thromb Res 2013;131(1):22–4. DOI: 10.1016/S0049-3848(13)70014-8. PMID: 23452734.

25. Shapiro I.M., Landis W.J., Risbud M.V. Matrix vesicles: Are they anchored exosomes? Bone 2015;79:29–36. DOI: 10.1016/j.bone.2015.05.013. PMID: 25980744.

26. Cui L., Houston D.A., Farquharson C., MacRae V.E. Characterisation of matrix vesicles in skeletal and soft tissue mineralisation. Bone 2016;87:147–58. DOI: 10.1016/j.bone.2016.04.007. PMID: 27072517.

27. Westerman M., Porter J.B. Red blood cellderived microparticles: An overview. Blood Cells Mol Dis 2016;59:134–9. DOI: 10.1016/j.bcmd.2016.04.003. PMID: 27282583.

28. Halim A.T., Ariffin N.A., Azlan M. Review: the Multiple Roles of Monocytic Microparticles. Inflammation 2016;39:1277–84. DOI: 10.1007/s10753-016-0381-8.

29. Curtis A.M., Edelberg J., Jonas R. et al. Endothelial microparticles: sophisticated vesicles modulating vascular function. Vasc Med 2013;18:204–14. DOI: 10.1177/1358863X13499773. PMID: 23892447.

30. Hwang I. Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 2013;36:105–11. DOI: 10.1007/s10059-013-0154-2. PMID: 23807045.

31. Nomura S., Shimizu M. Clinical significance of procoagulant microparticles. J Intensive Care 2015;3(1):2. DOI: 10.1186/s40560-014-0066-z. PMID: 25705427.

32. Redzic J.S., Balaj L., van der Vos K.E., Breakefield X.O. Extracellular RNA mediates and marks cancer progression. Semin Cancer Biol 2014;28:14–23. DOI: 10.1016/j.semcancer.2014.04.010. PMID: 24783980.

33. Obydennyy S.I., Sveshnikova A.N., Ataullakhanov F.I., Panteleev M.A. Dynamics of calcium spiking, mitochondrial collapse and phosphatidylserine exposure in platelet subpopulations during activation. J Thromb Haemost 2016;14:1867–81. DOI: 10.1111/jth.13395. PMID: 27343487.

34. Sveshnikova A.N., Ataullakhanov F.I., Panteleev M.A. Compartmentalized calcium signaling triggers subpopulation formation upon platelet activation through PAR1. Mol Biosyst 2015;11:1052–60. DOI: 10.1039/c4mb00667d. PMID: 25627921.

35. Shakhidzhanov S.S., Shaturny V.I., Panteleev M.A., Sveshnikova A.N. Modulation and pre-amplification of PAR1 signaling by ADP acting via the P2Y12 receptor during platelet subpopulation formation. Biochim Biophys Acta 2015;1850:2518–29. DOI: 10.1016/j.bbagen.2015.09.013. PMID: 26391841.

36. Kotova Y.N., Ataullakhanov F.I., Panteleev M.A. Formation of coated platelets is regulated by the dense granule secretion of adenosine 5'diphosphate acting via the P2Y12 receptor. J Thromb Haemost 2008;6:1603–5. DOI: 10.1111/j.1538-7836.2008.03052.x. PMID: 18541002.

37. Topalov N.N., Yakimenko A.O., Canault M. et al. Two types of procoagulant platelets are formed upon physiological activation and are controlled by integrin alpha(IIb)beta(3). Arterioscler Thromb Vasc Biol 2012;32:2475–83. DOI: 10.1161/ATVBAHA.112.253765. PMID: 22837472.

38. Topalov N.N., Kotova Y.N., Vasil'ev S.A., Panteleev M.A. Identification of signal transduction pathways involved in the formation of platelet subpopulations upon activation. Br J Haematol 2012;157:105–15. DOI: 10.1111/j.1365-2141.2011.09021.x. PMID: 23379894.

39. Ignatova A.A., Karpova O.V., Trakhtman P.E. et al. Functional characteristics and clinical effectiveness of platelet concentrates treated with riboflavin and ultraviolet light in plasma and in platelet additive solution. Vox Sang 2016;110:244–52. DOI: 10.1111/vox.12364. PMID: 26646605.

40. Artemenko E.O., Yakimenko A.O., Pichugin A.V. et al. Calpain-controlled detachment of major glycoproteins from the cytoskeleton regulates adhesive properties of activated phosphatidylserine-positive platelets. Biochem J 2016;473:435–48. DOI: 10.1042/BJ20150779. PMID: 26607836.

41. Zakharova N.V., Artemenko E.O., Podoplelova N.A. et al. Platelet surfaceassociated activation and secretion-mediated inhibition of coagulation factor XII. PLoS One 2015;10: e0116665. DOI: 10.1371/journal.pone.0116665. PMID: 25688860.

42. Stegmayr B., Ronquist G. Promotive effect on human sperm progressive motility by prostasomes. Urol Res 1982;10:253–7. PMID: 6219486.

43. Gross J.C., Chaudhary V., Bartscherer K., Boutros M. Active Wnt proteins are secreted on exosomes. Nat Cell Biol 2012;14:1036–45. DOI: 10.1038/ncb2574. PMID: 22983114.

44. Bakhti M., Winter C., Simons M. Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles. J Biol Chem 2011;286:787–96. DOI: 10.1074/jbc.M110.190009. PMID: 20978131.

45. Anderson H.C., Garimella R., Tague S.E. The role of matrix vesicles in growth plate development and biomineralization. Front Biosci 2005;10:822–37. PMID: 15569622.

46. Stott Sh., Breakefield X., Nahed B. Exosomes and circulating vesicles as biomarkers. The Center for Surgery, Innovation & Bioengineering. Available at: http://cfsib.com/bioengineering/exosomes/

47. Zmigrodzka M., Guzera M., Miskiewicz A. et al. The biology of extracellular vesicles with focus on platelet microparticles and their role in cancer development and progression. Tumour Biol 2016;37:14391–401. DOI: 10.1007/s13277-016-5358-6. PMID: 27629289.

48. Pihusch V., Rank A., Steber R. et al. Endothelial cell-derived microparticles in allogeneic hematopoietic stem cell recipients. Transplantation 2006;81:1405–9. DOI: 10.1097/01.tp.0000209218.24916.ba. PMID: 16732177.

49. Li W.Y., Chen X.M., Xiong W. et al. Detection of microvesicle miRNA expression in ALL subtypes and analysis of their functional roles. J Huazhong Univ Sci Technolog Med Sci 2014;34:640–5. DOI: 10.1007/s11596-014-1330-0. PMID: 25318871.

50. Chao F.C., Kim B.K., Houranieh A.M. et al. Infusible platelet membrane microvesicles: a potential transfusion substitute for platelets. Transfusion 1996;36:536–42. PMID: 8669086.

51. Nasiri S. Infusible platelet membrane as a platelet substitute for transfusion: an overview. Blood Transfus 2013;11:337–42. DOI: 10.2450/2013.0209-12. PMID: 23736926.

52. Akyurekli C., Le Y., Richardson R.B. et al. A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Rev 2015;11:150–60. DOI: 10.1007/s12015-014-9545-9. PMID: 25091427.

53. Oyer J.L., Igarashi R.Y., Kulikowski A.R. et al. Generation of highly cytotoxic natural killer cells for treatment of acute myelogenous leukemia using a feeder-free, particlebased approach. Biol Blood Marrow Transplant 2015;21(4):632–9. DOI: 10.1016/j.bbmt.2014.12.037.PMID:25576425

54. Tang K., Zhang Y., Zhang H. et al. Delivery of chemotherapeutic drugs in tumour cellderived microparticles. Nat Commun 2012;3:1282. DOI: 10.1038/ncomms2282. PMID: 23250412.

55. Nielsen C.T., Rasmussen N.S., Heegaard N.H., Jacobsen S. “Kill” the messenger: Targeting of cell-derived microparticles in lupus nephritis. Autoimmun Rev 2016;15:719–25. DOI: 10.1016/j.autrev.2016.03.009. PMID: 26970484.


Рецензия

Для цитирования:


Пантелеев М.А., Абаева А.А., Нечипуренко Д.Ю., Обыденный С.И., Свешникова А.Н., Шибеко А.М. Физиология и патология внеклеточных везикул. Онкогематология. 2017;12(1):62-70. https://doi.org/10.17650/1818-8346-2017-12-1-62-70

For citation:


Panteleev M.A., Abaeva A.A., Nechipurenko D.Yu., Obydenniy S.I., Sveshnikova A.N., Shibeko A.M. Physiology and pathology of extracellular vesicules. Oncohematology. 2017;12(1):62-70. (In Russ.) https://doi.org/10.17650/1818-8346-2017-12-1-62-70

Просмотров: 10099


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)