Adoptitive immunotherapy with genetically engineered T lymphocytes modified to express chimeric antigen receptors
https://doi.org/10.17650/1818-8346-2017-12-1-17-32
Abstract
Significant mortality due to oncological diseases as a whole, and oncohematological diseases in particular, motivates scientific and medical community to develop new treatment methods. One of the newest methods is adoptive cell therapy using patient’s own T-cells modified to express chimeric antigen receptors (CAR) to tumor-specific antigens. Despite high cost and side effects of treatment, promising clinical trials even in patients with advanced disease allow to anticipate successful use of this method in clinical practice.
The article includes a review of the main principles of this technique, published results of clinical studies of CAR T-cells with a focus on CD19 gene targeting, complications of this therapy, mechanisms of tumor resistance to CAR T-cells, and potential ways to overcome it.
About the Authors
A. А. PavlovaRussian Federation
3 Nobel St., Moscow 143026, Russia;
1275 York Avenue, New York, NY 10065, USA;
M. А. Maschan
Russian Federation
1 Samory Mashela Str., Moscow 117997, Russia
V. B. Ponomarev
United States
1275 York Avenue, New York, NY 10065, USA;
References
1. Злокачественные новообразования в России в 2015 году (заболеваемость и смертность). Доступно по: http://www.oncology.ru/service/statistics/malignant_tumors. [Malignancies in Russia in 2015 (morbidity and mortality). Available at: http://www.oncology.ru/service/statistics/malignant_tumors. (In Russ.)].
2. Irving B.A., Weiss A. The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor – associated signal transduction pathways. Cell 1991;64:891–901. PMID: 1705867.
3. Romeo C., Amiot M., Seed B. Sequence requirements for induction of cytolysis by the T cell antigen/Fc receptor zets chain. Cell 1992;68:889–97. PMID: 1547489.
4. Eshhar Z., Waks T., Gross G., Schindler D.G. Specific activation and targeting of cytotoxic lymphocytes throught chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 1993; 90:720–4. PMCID: PMC45737.
5. Newick K., Moon E., Albelda S.M. Chimeric antigen receptor T-cell therapy for solid tumors. Mol Ther Oncolytics 2016;3:16006. DOI: 10.1038/mto.2016.6.
6. Eshhar Z., Bach N., Fitzer-Attas C.J. et al. The T-body approach: potential for cancer immunotherapy. Springer Semin Immunopathol 1996;18(2):199–209. PMID: 8908700.
7. Gong M.C., Latouche J.B., Krause A. et al. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia 1999;1:123–7. PMID: 10933046.
8. Kershaw M.H., Westwood J.A., Parker L.L. et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006;12(20 pt 1):6106–15. DOI: 10.1158/1078-0432.CCR-06-1183.
9. Lamers C.H., Sleijfer S., Vulto A.G. et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 2006;1;24(13):e20–2. DOI: 10.1200/JCO.2006.05.9964.
10. Haynes N.M., Trapani J.A., Teng M.W. et al. Single-chain antigen recognition receptors that costimulate potent rejection of established experimental tumors. Blood 2002;100:3155–63. DOI: 10.1182/blood-2002-04-1041.
11. Hombach A., Heuser C., Marquardt T. et al. CD4+ T cells engrafted with a recombinant immunoreceptor ef ciently lyse target cells in a MHC antigen- and Fas-independent fashion. J Immunol 2001;167:1090–6. PMID: 11441120.
12. Kochenderfer J.N., Wilson W.H., Janik J.E. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010;116(20): 4099–102. DOI: 10.1182/blood-2010-04-281931.
13. Gill S., Maus M.V., Porter D.L. Chimeric antigen receptor T cell therapy: 25 years in the making. Blood Rev 2016;30(3):157–67. DOI: 10.1016/j.blre.2015.10.003.
14. Wilkie S., Picco G., Foster J. et al. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol 2008;180:4901–9. PMID: 18354214.
15. Pule M.A., Straathof K.C., Dotti G. et al. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 2005;12:933–41. DOI: 10.1016/j.ymthe.2005.04.016.
16. Wang J., Jensen M., Lin Y. et al. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther 2007;18:712–25. DOI: 10.1089/hum.2007.028.
17. Maher J., Wilkie S. CAR mechanics: driving T cells into the MUC of cancer. Cancer Res 2009;69(11):4559–62. DOI: 10.1158/0008-5472.CAN-09-0564.
18. Sadelain M., Brentjens R., Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov 2013;3(4):388–98. DOI: 10.1158/2159-8290.CD-12-0548.
19. Gan H.K., Burgess A.W., Clayton A.H., Scott A.M. Targeting of a conformationally exposed, tumor-specific epitope of EGFR as a strategy for cancer therapy. Cancer Res 2012;72(12):2924–30. DOI: 10.1158/0008-5472.CAN-11-3898.
20. Sampson J.H., Heimberger A.B., Archer G.E. et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 2010;28(31):4722–9. DOI: 10.1200/JCO.2010.28.6963.
21. Krogsgaard M., Davis M.M. How T cells ‘see’ antigen. Nat Immunol 2005;6:239–45. DOI: 10.1038/ni1173.
22. Rapoport A.P., Stadtmauer E.A., BinderScholl G.K. et al. NY-ESO-1–specific TCR–engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med 2015;21(8):914–21. DOI: 10.1038/nm.3910.
23. Morgan R.A., Chinnasamy N., Abate-Daga D. et al. Cancer regression and neurologcal toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 2013;36(2):133–51. DOI: 10.1097/CJI.0b013e3182829903.
24. Kakarla S., Gottschalk S. CAR T cells for solid tumors: armed and ready to go? Cancer J 2014;20(2):151–5. DOI: 10.1097/PPO.0000000000000032.
25. Li Y.S., Wasserman R., Hayakawa K., Hardy R.R. Identification of the earliest B lineage stage in mouse bone marrow. Immunity 1996;5:527–35. PMID: 8986713.
26. Li Y.S., Hayakawa K., Hardy R.R. The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J Exp Med 1993;178:951–60. PMCID: PMC2191150.
27. Maher J., Brentjens R.J., Gunset G. et al. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol 2002;20:70–5. DOI: 10.1038/nbt0102-70.
28. Davila M.L., Sadelain M. Biology and clinical application of CAR T cells for B cell malignancies. Int J Hematol 2016;104:6–17. DOI: 10.1007/s12185-016-2039-6.
29. Topp M.S., Gökbuget N., Stein A.S. et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol 2015 Jan;16(1):57–66. DOI: 10.1016/S1470-2045(14)71170-2.
30. Kochenderfer J.N., Rosenberg S.A. Treating B-cell cancer with T cells expressing antiCD19 chimeric antigen receptors. Nat Rev Clin Oncol 2013 May;10(5):267–76. DOI: 10.1038/nrclinonc.2013.46.
31. Wang X., Rivière I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol Ther Oncolytics 2016;3:16015. DOI: 10.1038/mto.2016.15.
32. Kochenderfer J.N., Dudley M.E., Kassim S.H. et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 2015;33:540–9. DOI: 10.1200/JCO.2014.56.2025.
33. Wang X., Stefanski J., Borquez-Ojeda O. et al. Comparison of CTS Dynabeadsc CD3/CD28, Miltenyi TransAct CD3/28 and ExpAct beads for large-scale CAR T cell manufacturing. European Society of Gene and Cell Therapy Collaborative Congress 2015, Helsinki, Finland. A31.
34. Vacchelli E., Vitale I., Eggermont A. et al. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2013;2:e25771. DOI: 10.4161/onci.25771.
35. Kim J.V., Latouche J.B., Rivière I., Sadelain M. The ABCs of artificial antigen presentation. Nat Biotechnol 2004;22:403–10. DOI: 10.1038/nbt955.
36. Bashour K.T., Graef P., Stemberger C. et al. Functional characterization of a T cell stimulation reagent for the production of therapeutic chimeric antigen receptor T cells. ASH 57th Annual Meeting & Exposition, 2015, Orlando, FL.
37. Sadelain M., Papapetrou E.P., Bushman F.D. Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer 2011;12(1):51–8. DOI: 10.1038/nrc3179.
38. Suerth J.D., Schambach A., Baum C. Genetic modification of lymphocytes by retrovirus-based vectors. Curr Opin Immunol 2012;24(5):598–608. DOI: 10.1016/j.coi.2012.08.007.
39. Ghani K., Wang X., de Campos-Lima P.O. et al. Efficient human hematopoietic cell transduction using RD114- and GALVpseudotyped retroviral vectors produced in suspension and serum-free media. Hum Gene Ther 2009;20:966–74. DOI: 10.1089/hum.2009.001.
40. Vannucci L., Lai M., Chiuppesi F. et al. Viral vectors: a look back and ahead on gene transfer technology. New Microbiol 2013;36:1–22. PMID: 23435812.
41. Throm R.E., Ouma A.A., Zhou S. et al. Efficient construction of producer cell lines for a SIN lentiviral vector for SCID-X1 gene therapy by concatemeric array transfection. Blood 2009;113:5104–10. DOI: 10.1182/blood-2008-11-191049.
42. Singh H., Huls H., Kebriaei P., Cooper L.J. A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19. Immunol Rev 2014;257:181–90. DOI: 10.1111/imr.12137.
43. Zhao Y., Zheng Z., Cohen C.J. et al. High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol Ther 2006;13(1):151–9. DOI: 10.1016/j.ymthe.2005.07.688.
44. Birkholz K., Hombach A., Krug C. et al. Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer. Gene Ther 2009;16(5):596–604. DOI: 10.1038/gt.2008.189.
45. Hollyman D., Stefanski J., Przybylowski M. et al. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother 2009;32:169–80. DOI: 10.1097/CJI.0b013e318194a6e8.
46. Levine B.L. Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells. Cancer Gene Ther 2015;22:79–84. DOI: 10.1038/cgt.2015.5.
47. Kumaresan P., Figliola M., Moyes J.S. et al. Automated cell enrichment of cytomegalovirus-specific T cells for clinical applications using the cytokine-capture system. J Vis Exp 2015;(104). DOI: 10.3791/52808.
48. Wang X., Rivière I. Manufacture of tumorand virus-specific T lymphocytes for adoptive cell therapies. Cancer Gene Ther 2015;22:85–94. DOI: 10.1038/cgt.2014.81.
49. Jensen M.C., Popplewell L., Cooper L.J. et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant 2010;16(9):1245–56. DOI: 10.1016/j.bbmt.2010.03.014.
50. Kalos M., Levine B.L., Porter D.L. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011;3(95):95ra73. DOI: 10.1126/scitranslmed.3002842.
51. Savoldo B., Ramos C.A., Liu E. et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 2011;121(5):1822–6. DOI: 10.1172/JCI46110.
52. Till B.G., Jensen M.C., Wang J. et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 2008;112(6):2261–71. DOI: 10.1182/blood-2007-12-128843.
53. Brentjens R.J., Riviere I., Park J.H. et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011;118(18):4817–28. DOI: 10.1182/blood-2011-04-348540.
54. Porter D.L., Levine B.L., Kalos M. et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011;365(8):725–33. DOI: 10.1056/NEJMoa1103849.
55. Kochenderfer J.N., Dudley M.E., Feldman S.A. et al. B-cell depletion and remissions of malignancy along with cytokineassociated toxicity in a clinical trial of antiCD19 chimeric-antigen-receptortransduced T cells. Blood 2012;119(12):2709–20. DOI: 10.1182/blood-2011-10-384388.
56. Brentjens R.J., Latouche J.B., Santos E. et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 2003;9(3):279–86. DOI: 10.1038/nm827.
57. Imai C., Mihara K., Andreansky M. et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 2004;18(4):676–84. DOI: 10.1038/sj.leu.2403302.
58. Sadelain M. CAR therapy: the CD19 paradigm. J Clin Invest 2015;125(9):3392–400. DOI: 10.1172/JCI80010.
59. Porter D.L., Hwang W.T., Frey N.V. et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 2015;7(303):303ra139. DOI: 10.1126/scitranslmed.aac5415.
60. Kochenderfer J.N., Somerville R., Lu L. et al. Anti-CD19 CAR T cells administered after low-dose chemotherapy can induce remissions of chemotherapy-refractory diffuse large B-cell lymphoma. Blood 2014;124(21):550.
61. Turtle C.J., Berger C., Sommermeyer D. et al. Anti-CD19 chimeric antigen receptormodified T cell therapy for B cell nonHodgkin lymphoma and chronic lymphocytic leukemia: fludarabine and cyclophosphamide lymphodepletion improves in vivo expansion and persistence of CAR-T cells and clinical outcomes. Blood 2015;126(23):184.
62. Schuster S.J., Svoboda J., Dwivedy Nasta S. et al. Sustained remissions following chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas. Blood 2015;126(23):183.
63. Fraietta J.A., Beckwith K.A., Patel P.R. et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood 2016;127(9):1117–27. DOI: 10.1182/blood-2015-11-679134.
64. Davila M.L., Riviere I., Wang X. et al. Efficacy and toxicity management of 19–28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014;6(224):224ra25. DOI: 10.1126/scitranslmed.3008226.
65. Brentjens R.J., Davila M.L., Riviere I. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013;5(177):177ra38. DOI: 10.1126/scitranslmed.3005930.
66. Maude S.L., Frey N., Shaw P.A. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014;371(16):1507–17. DOI: 10.1056/NEJMoa1407222.
67. Grupp S.A., Kalos M., Barrett D. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013;368(16):1509–18. DOI: 10.1056/NEJMoa1215134.
68. Lee D.W., Kochenderfer J.N., Stetler-Stevenson M. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 2015;385(9967):517–28. DOI: 10.1016/S0140-6736(14)61403-3.
69. Garfall A.L., Maus M.V., Hwang W.T. et al. Chimeric Antigen Receptor T Cells against CD19 for Multiple Myeloma. N Engl J Med 2015;3736:1040–7. DOI: 10.1056/NEJMoa1504542.
70. Danhof S., Gogishvili T., Koch S. et al. CAR-Engineered T Cells Specific for the Elotuzumab Target SLAMF7 Eliminate Primary Myeloma Cells and Confer Selective Fratricide of SLAMF7+ Normal Lymphocyte Subsets. Blood 2015;126:115.
71. Lonial S., Dimopoulos M., Palumbo A. et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N Engl J Med 2015;373(7):621–31. DOI: 10.1056/NEJMoa1505654.
72. Ali S.A., Shi V., Wang M.L. et al. Remissions of Multiple Myeloma during a Firstin-Humans Clinical Trial of T Cells Expressing an Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor; ASH Annual Meeting, 2015: Late-Breaking Abstracts, p. LBA-1.
73. Ryan M.C., Hering M., Peckham D. et al. Antibody targeting of B-cell maturation antigen on malignant plasma cells. Mol Cancer Ther 2007;6:3009–18. DOI: 10.1158/1535-7163.MCT-07-0464.
74. Ramadoss N.S., Schulman A.D., Choi S.H. et al. An anti-B cell maturation antigen bispecific antibody for multiple myeloma. J Am Chem Soc 2015;137:5288–91. DOI: 10.1021/jacs.5b01876.
75. Geyer M.B., Brentjens R.J. Review: Current clinical applications of chimeric antigen receptor (CAR) modified T cells. Cytotherapy 2016;18(11):1393–409. DOI: 10.1016/j.jcyt.2016.07.003.
76. Ahmed N., Brawley V.S., Hegde M. et al. Human Epidermal Growth Factor Receptor 2 (HER2) -Specific Chimeric Antigen Receptor-Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. J Clin Oncol 2015;33:1688–96. DOI: 10.1200/JCO.2014.58.0225.
77. Newick K., O'Brien S., Moon E., Albelda S.M. CAR T-cell therapy for solid tumors. Annu Rev Med 2017;68:139–52. DOI: 10.1146/annurev-med-062315-120245.
78. Fesnak A.D., June C.H., Levine B.L. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer 2016;16(9):566–81. DOI: 10.1038/nrc.2016.97.
79. Bonifant C.L., Jackson H.J., Brentjens R.J., Curran K.J. Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics 2016;3:16011. DOI:10.1038/mto.2016.11.
80. Wing M.G., Moreau T., Greenwood J. et al. Mechanism of first-dose cytokine-release syndrome by CAMPATH 1-H: involvement of CD16 (FcgammaRIII) and CD11a/ CD18 (LFA-1) on NK cells. J Clin Invest 1996;98(12):2819–26 DOI: 10.1172/JCI119110.
81. Suntharalingam G., Perry M.R., Ward S. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 2006;355(10):1018–28. DOI: 10.1056/NEJMoa063842.
82. Teachey D.T., Rheingold S.R., Maude S.L. et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 2013;121(26):5154–7. DOI: 10.1182/blood-2013-02-485623.
83. Morgan R.A., Yang J.C., Kitano M. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010;18(4):843–51. DOI: 10.1038/mt.2010.24.
84. Brentjens R., Yeh R., Bernal Y. et al. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 2010;18(4):666–8. DOI: 10.1038/mt.2010.31.
85. Lee D.W., Gardner R., Porter D.L. et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014;124:188–95. DOI:10.1182/blood-2014-05-552729.
86. Grupp S.A., Porter D.L., Teachey D. et al. CD19-Redirected Chimeric Antigen Receptor T (CART19) Cells Induce a Cytokine Release Syndrome (CRS) and Induction of Treatable Macrophage Activation Syndrome (MAS) That Can Be Managed by the IL-6 Antagonist Tocilizumab (toc). 54th ASH Annual Meeting and Exposition; Atlanta, GA. 2012. Abstract 2604.
87. Dai H., Wang Y., Lu X., Han W. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy. J Natl Cancer Inst 2016 Jan 27;108(7):djv439. DOI: 10.1093/jnci/djv439.
88. Zhang H., Ye Z. L., Yuan Z.G. et al. New Strategies for the Treatment of Solid Tumors with CAR-T Cells. Int J Biol Sci 2016;12(6):718–29. DOI:10.7150/ijbs.14405.
89. Jones B.S., Lamb L.S., Goldman F., Di Stasi A. Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol 2014;5:254. DOI: 10.3389/fphar.2014.00254.
90. Gargett T., Brown M.P. The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol 2014;5:235. DOI: 10.3389/fphar.2014.00235.
91. Ciceri F., Bonini C., Stanghellini M.T. et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol 2009;10:489–500. DOI: 10.1016/S1470-2045(09)70074-9.
92. Keu K.V., Witney T.H., Yaghoubi S. et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med 2017;9(373). pii: eaag2196. DOI: 10.1126/scitranslmed.aag2196.
93. Zah E., Lin M.Y., Silva-Benedict A. et al. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunol Res 2016;4(6):498–508. DOI: 10.1158/2326-6066.CIR-15-0231.
94. Hillerdal V., Essand M. Chimeric Antigen Receptor-Engineered T Cells for the Treatment of Metastatic Prostate Cancer. BioDrugs 2015;29:75–89. DOI: 10.1007/s40259-015-0122-9.
95. Hamid O., Robert C., Daud A. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 2013;369:134–44. DOI: 10.1056/NEJMoa1305133.
96. Craddock J.A., Lu A., Bear A. et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother 2010;33:780. DOI: 10.1097/CJI.0b013e3181ee6675.
97. Di Stasi A., De Angelis B., Rooney C.M. et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 2009;113:6392–402. DOI: 10.1182/blood-2009-03-209650.
98. Chmielewski M., Hombach A.A., Abken H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunological reviews. 2014;257:83–90. DOI: 10.1111/imr.12125.
99. Zhang L., Kerkar S.P., Yu Z. et al. Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol Ther 2011;19:751–9. DOI: 10.1038/mt.2010.313
Review
For citations:
Pavlova A.А., Maschan M.А., Ponomarev V.B. Adoptitive immunotherapy with genetically engineered T lymphocytes modified to express chimeric antigen receptors. Oncohematology. 2017;12(1):17-32. (In Russ.) https://doi.org/10.17650/1818-8346-2017-12-1-17-32