Preview

Oncohematology

Advanced search

NEXT-GENERATION GENE SEQUENCING AND ITS APPLICATIONS IN ONCOHEMATOLOGY

https://doi.org/10.17650/1818-8346-2016-11-4-22-32

Abstract

The review bears on basic principles and technologies of next-generation sequencing (NGS), as well as its applications for detection of gene mutations in leukemic cells. We discuss some novel data concerning NGS approach to studies of genetic heterogeneity in myeloproliferative disorders, detection of high-risk genes, including drug resistance mutations, epigenomic changes associated with leukemias, as well as molecular aspects of clonal evolution. A special section concerns basic problems with bioinformatics and adequate analysis of large digital databases obtained with NGS approach. Optimal choice of appropriate software is of utmost importance for adequate retrieval and interpretation of the NGS data.

About the Authors

I. M. Barkhatov
R.M. Gorbacheva Memorial Research Institute of Children Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University
Russian Federation

6–8 L’va Tolstogo St., Saint Petersburg 197022, Russia



A. V. Predeus
Bioinformatics Institute, Saint Petersburg National Research Academic University of the Russian Academy of Sciences
Russian Federation

2 Kantemirovskaya St., Saint Petersburg 194100, Russia



A. B. Chukhlovin
R.M. Gorbacheva Memorial Research Institute of Children Oncology, Hematology and Transplantation, I.P. Pavlov First Saint Petersburg State Medical University
Russian Federation

6–8 L’va Tolstogo St., Saint Petersburg 197022, Russia



References

1. Смирнихина С.А., Лавров А.В., Адильгереева Э.П. и др. Клиническое значение полноэкзомных исследований миелоидных опухолей методом секвенирования следующего поколения. Клиническая онкогематология 2013;6(1):11–9. [Smirnikhina S.A., Lavrov A.V., Adil’gireeva E.P. et al. Clinical significance of whole-exome studies using next generation sequencing in myeloid neoplasia. Klinicheskaya onkogematologiya = Clinical Oncohematology 2013;6(1):11–9 (In Russ.)].

2. Ross J.S., Cronin M. Whole cancer genome sequencing by next-generation methods. Am J Clin Pathol 2011;136(4):527–39. DOI: 10.1309/AJCPR1SVT1VHUGXW. PMID: 21917674.

3. Gullapalli R.R., Desai K.V., Santana- Santos L. et al. Next generation sequencing in clinical medicine: Challenges and lessons for pathology and biomedical informatics. J Pathol Inform 2012;3:40. DOI: 10.4103/2153-3539.103013. PMID: 23248761.

4. Papaemmanuil E., Gerstung M., Bullinger L. et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016;374(23):2209–21. DOI: 10.1056/NEJMoa1516192. PMID: 27276561.

5. Au C.H., Wa A., Ho D.N. et al. Clinical evaluation of panel testing by next-generation sequencing (NGS) for gene mutations in myeloid neoplasms. Diagn Pathol 2016;11:11. DOI: 10.1186/s13000-016-0456-8. PMID: 26796102.

6. Grossmann V., Kohlmann A., Klein H.U. et al. Targeted next-generation sequencing detects point mutations, insertions, deletions and balanced chromosomal rearrangements as well as identifies novel leukemia-specific fusion genes in a single procedure. Leukemia 2011;25(4):671–80. DOI: 10.1038/leu.2010.309. PMID: 21252984.

7. Gaidzik V.I., Bullinger L., Schlenk R.F. et al. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J Clin Oncol 2011;29(10):1364–72. DOI: 10.1200/JCO.2010.30.7926. PMID: 21343560.

8. Delic S., Rose D., Kern W. et al. Application of an NGS-based 28-gene panel in myeloproliferative neoplasms reveals distinct mutation patterns in essential thrombocythaemia, primary myelofibrosis and polycythaemia vera. Br J Haematol 2016;175(3):419–26. DOI: 10.1111/bjh.14269. PMID: 27447873.

9. Yeh C.H., Bai X.T., Moles R. et al. Mutation of epigenetic regulators TET2 and MLL3 in patients with HTLV-I-induced acute adult T-cell leukemia. Mol Cancer 2016;15(1):15. DOI: 10.1186/s12943-016-0500-z. PMID: 26880370.

10. Debarri H., Lebon D., Roumier C. et al. IDH1/2 but not DNMT3A mutations are suitable targets for minimal residual disease monitoring in acute myeloid leukemia patients: a study by the Acute Leukemia French Association. Oncotarget 2015;6(39):42345–53. DOI: 10.18632/oncotarget.5645. PMID: 26486081.

11. Северина Н.А., Бидерман Б.В., Никитин Е.А., Судариков А.Б. Мутации генов при хроническом лимфолейкозе: новые аспекты патогенеза, открытые с помощью технологий полногеномного секвенирования. Гематология и трансфузиология 2014;59(3):41–8. [Severina N.A., Biderman B.V., Nikitin E.A., Sudarikov A.B. Gene mutations in chronic lymphocytic leukemia: new aspects of pathogenesis discovered by next generation sequencing. Gematologiya i transfuziologiya = Hematology and Transfusiology 2014;59(3):41–8. (In Russ.)].

12. Vollbrecht C., Mairinger F.D., Koitzsch U. et al. Comprehensive analysis of disease-related genes in chronic lymphocytic leukemia by multiplex PCR-based next generation sequencing. PLoS One 2015;10(6):e0129544. DOI: 10.1371/journal.pone.0129544. PMID: 26053404.

13. Rossi D., Khiabanian H., Spina V. et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood 2014;123(14):2139–47. DOI: 10.1182/blood-2013-11-539726. PMID: 24501221.

14. Malcikova J., Stano-Kozubik K., Tichy B. et al. Detailed analysis of therapy-driven clonal evolution of TP53 mutations in chronic lymphocytic leukemia. Leukemia 2015; 29(4):877–85. DOI: 10.1038/leu.2014.297. PMID: 25287991.

15. Landau D.A., Tausch E., Taylor-Weiner A.N. et al. Mutations driving CLL and their evolution in progression and relapse. Nature 2015;526(7574):525–30. DOI: 10.1038/nature15395. PMID: 26466571.

16. Lundberg P., Karow A., Nienhold R. et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 2014;123(14):2220–8. DOI: 10.1182/blood-2013-11-537167. PMID: 24478400.

17. Soverini S., De Benedittis C., Polakova K.M. et al. Next-generation sequencing for sensitive detection of BCR-ABL1 mutations relevant to tyrosine kinase inhibitor choice in imatinib-resistant patients. Oncotarget 2016;7(16):21982–90. DOI: 10.18632/oncotarget.8010. PMID: 26980736.

18. Van der Auwera G.A., Carneiro M.O., Hartl C. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 2013;43:11.10.1–33. DOI: 10.1002/0471250953.bi1110s43. PMID: 25431634.

19. Liu X., Han S., Wang Z. et al. Variant callers for next-generation sequencing data: a comparison study. PLoS One 2013;8(9):e75619. DOI: 10.1371/journal.pone.0075619. PMID: 24086590.

20. Pabinger S., Dander A., Fischer M. et al. A survey of tools for variant analysis of next-generation genome sequencing data. Brief Bioinform 2014;15(2):256–78. DOI: 10.1093/bib/bbs086. PMID: 23341494.

21. Crowgey E.L., Stabley D.L., Chen C. et al. An integrated approach for analyzing clinical genomic variant data from nextgeneration sequencing. J Biomol Tech 2015;26(1):19–28. DOI: 10.7171/jbt.15-2601-002. PMID: 25649353.

22. D’Antonio M., D’Onorio De Meo P., Paoletti D et al. WEP: a high-performance analysis pipeline for whole-exome data. BMC Bioinformatics 2013;14 Suppl 7:S11. DOI: 10.1186/1471-2105-14-S7-S11. PMID: 23815231.

23. Münz M., Ruark E., Renwick A. et al. CSN and CAVA: variant annotation tools for rapid, robust next-generation sequencing analysis in the clinical setting. Genome Med 2015;7:76. DOI: 10.1186/s13073-015-0195-6. PMID: 26315209.

24. Backert L., Kohlbacher O. Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Med 2015;7:119. DOI: 10.1186/s13073-015-0245-0. PMID: 26589500.


Review

For citations:


Barkhatov I.M., Predeus A.V., Chukhlovin A.B. NEXT-GENERATION GENE SEQUENCING AND ITS APPLICATIONS IN ONCOHEMATOLOGY. Oncohematology. 2016;11(4):56-63. (In Russ.) https://doi.org/10.17650/1818-8346-2016-11-4-22-32

Views: 10396


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)