Использование многоцветной проточной цитометрии для диагностики макроглобулинемии Вальденстрема
https://doi.org/10.17650/1818-8346-2025-20-1-128-138
Аннотация
Макроглобулинемия Вальденстрема – лимфоплазмоцитарная лимфома, морфологическим субстратом которой являются В‑лимфоциты, проплазмоциты, а также плазматические клетки. Всемирная организация здравоохранения для диагностики данного заболевания рекомендует в клинической практике использовать метод многоцветной проточной цитометрии и анализировать такие маркеры, как IgM, Cd19, Cd20, Cd22, Cd25, Cd10, Cd23, Cd103, Cd138. Опираясь на международный и собственный опыт, мы рекомендуем врачам анализировать отдельно опухолевые В‑лимфоциты и плазматические клетки при диагностике макроглобулинемии Вальденстрема, так как иммунофенотипический профиль этих популяций различается. В диагностике такой подход дает более полное представление о вкладе различных субпопуляций в опухолевую массу, а при мониторинге минимальной остаточной болезни помогает обнаружить опухолевый клон, который после терапии преимущественно представлен плазматическими клетками. Мы рекомендуем для иммунофенотипического исследования опухолевого субстрата при макроглобулинемии Вальденстрема использовать антитела к поверхностным и внутриклеточным маркерам, таким как Cd138, Cd38, Cd19, Cd45, Cd20, Cd22, Cd27, cytκ, cytλ и cytIgM.
Ключевые слова
Об авторах
И. В. ГальцеваРоссия
Ирина Владимировна Гальцева
125167; Новый Зыковский пр-д, 4; Москва
Ю. А. Цой
Россия
125167; Новый Зыковский пр-д, 4; Москва
А. Е. Грачев
Россия
125167; Новый Зыковский пр-д, 4; Москва
Н. М. Капранов
Россия
125167; Новый Зыковский пр-д, 4; Москва
К. А. Никифорова
Россия
125167; Новый Зыковский пр-д, 4; Москва
Ю. О. Давыдова
Россия
125167; Новый Зыковский пр-д, 4; Москва
А. А. Куликов
Россия
125167; Новый Зыковский пр-д, 4; Москва
Е. Е. Звонков
Россия
125167; Новый Зыковский пр-д, 4; Москва
Е. Н. Паровичникова
Россия
125167; Новый Зыковский пр-д, 4; Москва
Список литературы
1. Owen R.G., Treon S.P., AlKatib A. et al. Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol 2003;30(2):110–5. DOI: 10.1053/sonc.2003.50082
2. Campo E., Swerdlow S.H., Harris N.L. et al. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 2011;117(19):5019–32. DOI: 10.1182/blood201101293050
3. Alaggio R., Amador C., Anagnostopoulos I. et al. The 5<sup>th</sup> edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022;36(7):1720–48. DOI: 10.1038/s41375022016202
4. Swerdlow S.H., Cook J.R., Sohani A.R. et al. Lymphoplasmacytic lymphoma. In: WHO classification of tumours of hematopoietic and lymphoid tissues. Eds.: S.H. Swerdlow, E. Campo, N.L. Harris et al. France: IARC, 2017. Pp. 232–235.
5. Tursz T., Brouet J.C., Flandrin G. et al. Clinical and pathologic features of Waldenström’s macroglobulinemia in seven patients with serum monoclonal IgG or IgA. Am J Med 1977;63(4):499–502. DOI: 10.1016/00029343(77)901930
6. Cao X., Medeiros L.J., Xia Y. et al. Clinicopathologic features and outcomes of lymphoplasmacytic lymphoma patients with monoclonal IgG or IgA paraprotein expression. Leuk Lymphoma 2016;57(5):1104–13. DOI: 10.3109/10428194.2015.1096357
7. Varettoni M., Boveri E., Zibellini S. et al. Clinical and molecular characteristics of lymphoplasmacytic lymphoma not associated with an IgM monoclonal protein: a multicentric study of the Rete Ematologica Lombarda (REL) network. Am J Hematol 2019;94(11):1193–9. DOI: 10.1002/ajh.25600
8. Castillo J.J., Itchaki G., Gustine J.N. et al. A matched casecontrol study comparing features, treatment and outcomes between patients with nonIgM lymphoplasmacytic lymphoma and Waldenström macroglobulinemia. Leuk Lymphoma 2020;61(6):1388–94. DOI: 10.1080/10428194.2020.1719100
9. Qiu L., Nwogbo O.V., Medeiros L.J. et al. Lymphoplasmacytic lymphoma with IgG or IgA paraprotein: a study of 29 cases including cases that can mimic plasma cell neoplasms. Hum Pathol 2022;130:47–57. DOI: 10.1016/j.humpath.2022.10.005
10. Kang J., Hong J.Y., Suh C. Clinical features and survival outcomes of patients with lymphoplasmacytic lymphoma, including nonIgM type, in Korea: a singlecenter experience. Blood Res 2018;53(3):189–97. DOI: 10.5045/br.2018.53.3.189
11. Waldenstrom J. Incipient myelomatosis or “essential” hyperglobulinemia with fibrinogenopenia – a new syndrome? Acta Med Scand 1944;34:216–22. DOI: 10.1111/j.09546820.1944.tb03955.x
12. Teras L.R., DeSantis C.E., Cerhan J.R. et al. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin 2016;66(6):443–59. DOI: 10.3322/caac.21357
13. Vos J.M., Minnema M.C., Wijermans P.W. et al. Guideline for diagnosis and treatment of Waldenström’s macroglobulinaemia. Neth J Med 2013;71(2):54–62.
14. Wang H., Chen Y., Li F. et al. Temporal and geographic variations of Waldenstrom macroglobulinemia incidence: a large populationbased study. Cancer 2012;118(15):3793–800. DOI: 10.1002/cncr.26627
15. Groves F.D., Travis L.B., Devesa S.S. et al. Waldenström’s macroglobulinemia: incidence patterns in the United States, 1988–1994. Cancer 1998;82(6):1078–81.
16. Krajny M., Pruzanski W. Waldenström’s macroglobulinemia : review of 45 cases. Can Med Assoc J 1976;114(10):899–900, 902, 905.
17. Sekhar J., Sanfilippo K., Zhang Q. et al. Waldenström macroglobulinemia : a Surveillance, Epidemiology, and End Results database review from 1988 to 2005. Leuk Lymphoma 2012;53(8):1625–6. DOI: 10.3109/10428194.2012.656103
18. Cho J.H., Shim J.H., Yoon S.E. et al. Realworld data on the survival outcome of patients with newly diagnosed Waldenström macroglobulinemia. Korean J Intern Med 2021;36(3):668–78. DOI: 10.3904/kjim.2019.367
19. Kaseb H., GonzalezMosquera L.F., Parsi M., Mewawalla P. Lymphoplasmacytic Lymphoma. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025–.
20. Morel P., Duhamel A., Gobbi P. et al. International prognostic scoring system for Waldenstrom macroglobulinemia. Blood 2009;113(18):4163–70. DOI: 10.1182/blood200808174961
21. Kyle R.A., Treon S.P., Alexanian R. et al. Prognostic markers and criteria to initiate therapy in Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol 2003;30(2):116–20. DOI: 10.1053/sonc.2003.50038
22. Paiva B., Montes M.C., García-Sanz R. et al. Multiparameter flow cytometry for the identification of the Waldenström’s clone in IgM MGUS and Waldenström’s Macroglobulinemia: new criteria for differential diagnosis and risk stratification. Leukemia 2014;28(1):166–73. DOI: 10.1038/leu.2013.124
23. Kyle R.A., Therneau T.M., Rajkumar S.V. et al. Longterm follow-up of IgM monoclonal gammopathy of undetermined significance. Semin Oncol 2003;30(2):169–71. DOI: 10.1053/sonc.2003.50062
24. Kyle R.A., Benson J.T., Larson D.R. et al. Progression in smoldering Waldenstrom macroglobulinemia: longterm results. Blood 2012;119(19):4462–6. DOI: 10.1182/blood201110384768
25. Fraumeni J.F., Wertelecki W., Blattner W.A. et al. Varied manifestations of a familial lymphoproliferative disorder. Am J Med 1975;59(1):145–51. DOI: 10.1016/00029343(75)903332
26. Blattner W.A., Garber J.E., Mann D.L. et al. Waldenström’s macroglobulinemia and autoimmune disease in a family. Ann Intern Med 1980;93(6):830–2. DOI: 10.7326/00034819936830
27. Kyle R.A., Garton J.P. The spectrum of IgM monoclonal gammopathy in 430 cases. Mayo Clin Proc 1987;62(8):719–31. DOI: 10.1016/s00256196(12)652252
28. Renier G., Ifrah N., Chevailler A. et al. Four brothers with Waldenstrom’s macroglobulinemia. Cancer 1989;64(7):1554–9. DOI: 10.1002/10970142(19891001)64:7<1554::aid-cncr2820640734>3.0.co;23
29. Taleb N., Tohme A., Abi Jirgiss D. et al. Familial macroglobulinemia in a Lebanese family with two sisters presenting Waldenström’s disease. Acta Oncol 1991;30(6):703–5. DOI: 10.3109/02841869109092443
30. Treon S.P., Hunter Z.R., Aggarwal A. et al. Characterization of familial Waldenstrom’s macroglobulinemia. Ann Oncol 2006;17(3):488–94. DOI: 10.1093/annonc/mdj111
31. Seligmann M. A genetic predisposition to Waldenström’s macroglobulinaemia. Acta Med Scand Suppl 1966;445:140–6. DOI: 10.1111/j.09546820.1966.tb02353.x
32. Björnsson O.G., Arnason A., Gudmunosson S. et al. Macroglobulinaemia in an Icelandic family. Acta Med Scand 1978;203(4):283–8. DOI: 10.1111/j.09546820.1978.tb14874.x
33. Steingrímsson V., Lund S.H., Turesson I. et al. Population-based study on the impact of the familial form of Waldenström macroglobulinemia on overall survival. Blood 2015;125(13):2174–5. DOI: 10.1182/blood201501622068
34. Kristinsson S.Y., Björkholm M., Goldin L.R. et al. Risk of lymphoproliferative disorders among firstdegree relatives of lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia patients: a populationbased study in Sweden. Blood 2008;112(8):3052–6. DOI: 10.1182/blood200806162768
35. Sahota S.S., Forconi F., Ottensmeier C.H. et al. Typical Waldenstrom macroglobulinemia is derived from a Bcell arrested after cessation of somatic mutation but prior to isotype switch events. Blood 2002;100(4):1505–7.
36. Walsh S.H., Laurell A., Sundström G. et al. Lymphoplasmacytic lymphoma/Waldenström’s macroglobulinemia derives from an extensively hypermutated B cell that lacks ongoing somatic hypermutation. Leuk Res 2005;29(7):729–34. DOI: 10.1016/j.leukres.2004.12.008
37. Sahota S.S., Babbage G., WestonBell N.J. CD27 in defining memory B-cell origins in Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma 2009;9(1):33–5. DOI: 10.3816/CLM.2009.n.007
38. Remstein E.D., Hanson C.A., Kyle R.A. et al. Despite apparent morphologic and immunophenotypic heterogeneity, Waldenstrom’s macroglobulinemia is consistently composed of cells along a morphologic continuum of small lymphocytes, plasmacytoid lymphocytes, and plasma cells. Semin Oncol 2003;30(2):182–6. DOI: 10.1053/sonc.2003.50073
39. Lemal R., Poulain S., LedouxPilon A. et al. Mast cell density and its clinical relevance in Waldenström’s macroglobulinemia. EJHaem 2022;3(2):371–8. DOI: 10.1002/jha2.378
40. Ho A.W., Hatjiharissi E., Ciccarelli B.T. et al. CD27CD70 interactions in the pathogenesis of Waldenstrom macroglobulinemia. Blood 2008;112(12):4683–9. DOI: 10.1182/blood200704084525
41. Pasricha S.R., Juneja S.K., Westerman D.A. et al. Bonemarrow plasma cell burden correlates with IgM paraprotein concentration in Waldenstrom macroglobulinaemia. J Clin Pathol 2011;64(6):520–3. DOI: 10.1136/jcp.2010.088591
42. Morice W.G., Chen D., Kurtin P.J. et al. Novel immunophenotypic features of marrow lymphoplasmacytic lymphoma and correlation with Waldenström’s macroglobulinemia. Mod Pathol 2009;22(6):807–16. DOI: 10.1038/modpathol.2009.34
43. Barakat F.H., Medeiros L.J., Wei E.X. et al. Residual monotypic plasma cells in patients with Waldenstrom macroglobulinemia after therapy. Am J Clin Pathol 2011;135(3):365–73. DOI: 10.1309/AJCP15YFULCZHZVH
44. De Tute R.M., Rawstron A.C., Owen R.G. Immunoglobulin M concentration in Waldenström macroglobulinemia: correlation with bone marrow B cells and plasma cells. Clin Lymphoma Myeloma Leuk 2013;13(2):211–3. DOI: 10.1016/j.clml.2013.02.018
45. Kyrtsonis M.C., Levidou G., Korkolopoulou P. et al. CD138 expression helps distinguishing Waldenström’s macroglobulinemia (WM) from splenic marginal zone lymphoma (SMZL). Clin Lymphoma Myeloma Leuk 2011;11(1):99–102. DOI: 10.3816/CLML.2011.n.019
46. PérezEscurza O., FloresMontero J., Óskarsson J.Þ. et al. Immunophenotypic assessment of clonal plasma cells and B-cells in bone marrow and blood in the diagnostic classification of early stage monoclonal gammopathies: an iSTOPMM study. Blood Cancer J 2023;13(1):182. DOI: 10.1038/s41408023009441
47. Lin P., Medeiros L.J. Lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia: an evolving concept. Adv Anat Pathol 2005;12(5):246–55. DOI: 10.1097/01.pap.0000184176.65919.17
48. Treon S.P., Xu L., Yang G. et al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med 2012;367(9):826–33. DOI: 10.1056/NEJMoa1200710
49. Jiménez C., Sebastián E., Chillón M.C. et al. MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenström’s macroglobulinemia. Leukemia 2013;27(8):1722–8. DOI: 10.1038/leu.2013.62
50. Varettoni M., Arcaini L., Zibellini S. et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom’s macroglobulinemia and related lymphoid neoplasms. Blood 2013;121(13):2522–8. DOI: 10.1182/blood201209457101
51. Poulain S., Roumier C., Decambron A. et al. MYD88 L265P mutation in Waldenstrom macroglobulinemia. Blood 2013;121(22):4504–11. DOI: 10.1182/blood201206436329
52. Xu L., Hunter Z.R., Yang G. et al. MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other Bcell lymphoproliferative disorders using conventional and quantitative allelespecific polymerase chain reaction [published correction appears in Blood 2013;121(26):5259]. Blood 2013;121(11):2051–8. DOI: 10.1182/blood201209454355
53. Ondrejka S.L., Lin J.J., Warden D.W. et al. MYD88 L265P somatic mutation: its usefulness in the differential diagnosis of bone marrow involvement by Bcell lymphoproliferative disorders. Am J Clin Pathol 2013;140(3):387–94. DOI: 10.1309/AJCP10ZCLFZGYZIP
54. Ansell S.M., Hodge L.S., Secreto F.J. et al. Activation of TAK1 by MYD88 L265P drives malignant Bcell Growth in non-Hodgkin lymphoma. Blood Cancer J 2014;4(2):e183. DOI: 10.1038/bcj.2014.4
55. Rodriguez S., Celay J., Goicoechea I. et al. Preneoplastic somatic mutations including MYD88L265P in lymphoplasmacytic lymphoma. Sci Adv 2022;8(3):eabl4644. DOI: 10.1126/sciadv.abl4644
56. Willenbacher W., Willenbacher E., Brunner A. et al. Improved accuracy of discrimination between IgM multiple myeloma and Waldenström macroglobulinaemia by testing for MYD88 L265P mutations. Br J Haematol 2013;161(6):902–4. DOI: 10.1111/bjh.12313
57. Schmidt J., Federmann B., Schindler N. et al. MYD88 L265P and CXCR4 mutations in lymphoplasmacytic lymphoma identify cases with high disease activity. Br J Haematol 2015;169(6):795–803. DOI: 10.1111/bjh.13361
58. MartinezLopez A., CurielOlmo S., Mollejo M. et al. MYD88 (L265P) somatic mutation in marginal zone Bcell lymphoma. Am J Surg Pathol 2015;39(5):644–51. DOI: 10.1097/PAS.0000000000000411
59. Hunter Z.R., Xu L., Yang G. et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with Bcell lymphomagenesis. Blood 2014;123(11):1637–46. DOI: 10.1182/blood201309525808
60. Poulain S., Roumier C., VenetCaillault A. et al. Genomic landscape of CXCR4 mutations in Waldenström Macroglobulinemia. Clin Cancer Res 2016;22(6):1480–8. DOI: 10.1158/10780432.CCR150646
61. Treon S.P., Cao Y., Xu L. et al. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood 2014;123(18):2791–6. DOI: 10.1182/blood201401550905
62. Orfao A., Almeida J., Sanchez M.L. et al. Immunophenotypic diagnosis of leukemic Bcell chronic lymphoproliferative disorders other than chronic lymphocytic leukemia. In: Chronic Lymphocytic Leukemia. Contemporary Hematology. Ed.: Faguet G.B. Humana Press, Totowa, NJ. 2004. Pp. 173–190.
63. Seegmiller A.C., Hsi E.D., Craig F.E. The current role of clinical flow cytometry in the evaluation of mature Bcell neoplasms. Cytometry B Clin Cytom 2019;96(1):20–9. DOI: 10.1002/cyto.b.21756
64. StetlerStevenson M., Braylan R.C. Flow cytometric analysis of lymphomas and lymphoproliferative disorders. Semin Hematol 2001;38(2):111–23.
65. Brooimans R.A., Kraan J., van Putten W. et al. Flow cytometric differential of leukocyte populations in normal bone marrow: influence of peripheral blood contamination. Cytometry B Clin Cytom 2009;76(1):18–26. DOI: 10.1002/cyto.b.20439
66. Dogliotti I., Jiménez C., Varettoni M. et al. Diagnostics in Waldenström’s macroglobulinemia: a consensus statement of the European Consortium for Waldenström’s Macroglobulinemia. Leukemia 2023;37(2):388–95. DOI: 10.1038/s41375022017623
67. Banchereau J., Rousset F. Human B lymphocytes: phenotype, proliferation, and differentiation. Adv Immunol 1992;52:125–262. DOI: 10.1016/s00652776(08)608767
68. Shrimpton J.K. Plasma cell differentiation in the Bcell malignancy Waldenström macroglobulinemia. University of Leeds, 2019. 338 p.
69. Van Lochem E.G., van der Velden V.H., Wind H.K. et al. Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: reference patterns for agerelated changes and diseaseinduced shifts. Cytometry B Clin Cytom 2004;60(1):1–13. DOI: 10.1002/cyto.b.20008
70. Perez-Andres M., Paiva B., Nieto W.G. et al. Human peripheral blood Bcell compartments: a crossroad in Bcell traffic. Cytometry B Clin Cytom 2010;78(Suppl 1):S47–60. DOI: 10.1002/cyto.b.20547
71. Mizuta S., Yamane N., Mononobe S. et al. VS38 staining contributes to a novel gating strategy in flow cytometry for small B cell lymphoma, especially in lymphoplasmacytic lymphoma/Waldenström macroglobulinemia. Cytometry B Clin Cytom 2022;102(1):50–61. DOI: 10.1002/cyto.b.22000
72. Caraux A., Klein B., Paiva B. et al. Circulating human B and plasma cells. Ageassociated changes in counts and detailed characterization of circulating normal CD138− and CD138+ plasma cells. Haematologica 2010;95(6):1016–20. DOI: 10.3324/haematol.2009.018689
73. Klein U., Rajewsky K., Küppers R. Human immunoglobulin (Ig) M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med 1998;188(9):1679–89. DOI: 10.1084/jem.188.9.1679
74. Tangye S.G., Liu Y.J., Aversa G. et al. Identification of functional human splenic memory B cells by expression of CD148 and CD27. J Exp Med 1998;188(9):1691–703. DOI: 10.1084/jem.188.9.1691
75. Radbruch A., Muehlinghaus G., Luger E.O. et al. Competence and competition: the challenge of becoming a longlived plasma cell. Nat Rev Immunol 2006;6(10):741–50. DOI: 10.1038/nri1886
76. O’Connell F.P., Pinkus J.L., Pinkus G.S. CD138 (syndecan1), a plasma cell marker immunohistochemical profile in hematopoietic and nonhematopoietic neoplasms. Am J Clin Pathol 2004;121(2):254–63. DOI: 10.1309/617DWB5GNFWXHW4L
77. Costes V., Magen V., Legouffe E. et al. The Mi15 monoclonal antibody (antisyndecan1) is a reliable marker for quantifying plasma cells in paraffinembedded bone marrow biopsy specimens. Hum Pathol 1999;30(12):1405–11. DOI: 10.1016/s00468177(99)901600
78. Jung J., Choe J., Li L., Choi Y.S. Regulation of CD27 expression in the course of germinal center B cell differentiation: the pivotal role of IL10. Eur J Immunol 2000;30(8):2437–43. DOI: 10.1002/15214141(2000)30:8<2437::AID-IMMU2437>3.0.CO;2M
79. Mei H.E., Wirries I., Frölich D. et al. A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. Blood 2015;125(11):1739–48. DOI: 10.1182/blood201402555169
80. Arumugakani G., Stephenson S.J., Newton D.J. et al. Early emergence of CD19-negative human antibodysecreting cells at the plasmablast to plasma cell transition. J Immunol 2017;198(12):4618–28. DOI: 10.4049/jimmunol.1501761
81. Flores-Montero J., de Tute R., Paiva B. et al. Immunophenotype of normal vs. myeloma plasma cells: toward antibody panel specifications for MRD detection in multiple myeloma. Cytometry B Clin Cytom 2016;90(1):61–72. DOI: 10.1002/cyto.b.21265
82. Shaheen S.P., Talwalkar S.S., Lin P., Medeiros L.J. Waldenström macroglobulinemia : a review of the entity and its differential diagnosis. Adv Anat Pathol 2012;19(1):11–27. DOI: 10.1097/PAP.0b013e31824019d0
83. Growková K., Kryukova E., Kufová Z. et al. Waldenström’s macroglobulinemia: two malignant clones in a monoclonal disease? Molecular background and clinical reflection. Eur J Haematol 2017;99(6):469–78. DOI: 10.1111/ejh.12959
84. Алгоритмы диагностики и протоколы лечения заболеваний системы крови : в 2 томах. Под ред. Е.Н. Паровичниковой. Т. 2. М.: Практика, 2024. С. 174–202.
85. Gong J.Z., Lagoo A.S., Peters D. et al. Value of CD23 determination by flow cytometry in differentiating mantle cell lymphoma from chronic lymphocytic leukemia/small lymphocytic lymphoma. Am J Clin Pathol 2001;116(6):893–7. DOI: 10.1309/UQ4NM5KL0ANYYD3G
86. Palumbo G.A., Parrinello N., Fargione G. et al. CD200 expression may help in differential diagnosis between mantle cell lymphoma and Bcell chronic lymphocytic leukemia. Leuk Res 2009;33(9):1212–6. DOI: 10.1016/j.leukres.2009.01.017
87. Xu Y., McKenna R.W., Kroft S.H. Assessment of CD10 in the diagnosis of small Bcell lymphomas: a multiparameter flow cytometric study. Am J Clin Pathol 2002;117(2):291–300. DOI: 10.1309/T88X71U4WC0R2531
88. Lau H., Nagy A., Atwater S.K. et al. An integrated flow cytometry analysis of 286 mature B cell neoplasms identifies CD13 as a useful marker for diagnostic subtyping. Int J Lab Hematol 2018;40(6):715–20. DOI: 10.1111/ijlh.12909
89. Rawstron A.C., Orfao A., Beksac M. et al. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 2008;93(3):431–8. DOI: 10.3324/haematol.11080
90. Konoplev S., Medeiros L.J., BuesoRamos C.E. et al. Immunophenotypic profile of lymphoplasmacytic lymphoma/Waldenström macroglobulinemia. Am J Clin Pathol 2005;124(3):414–20. DOI: 10.1309/3G1XDX0DVHBNVKB4
91. San Miguel J.F., Vidriales M.B., Ocio E. et al. Immunophenotypic analysis of Waldenstrom’s macroglobulinemia. Semin Oncol 2003;30(2):187–95. DOI: 10.1053/sonc.2003.50074
92. Paulus A., Chitta K.S., Wallace P.K. et al. Immunophenotyping of Waldenströms macroglobulinemia cell lines reveals distinct patterns of surface antigen expression: potential biological and therapeutic implications. PLoS One 2015;10(4):e0122338. DOI: 10.1371/journal.pone.0122338
93. Hodge L.S., Novak A.J., Grote D.M. et al. Establishment and characterization of a novel Waldenstrom macroglobulinemia cell line, MWCL1. Blood 2011;117(19):e190–7. DOI: 10.1182/blood201012326868
94. Kriangkum J., Taylor B.J., Treon S.P. et al. Clonotypic IgM V/D/J sequence analysis in Waldenstrom macroglobulinemia suggests an unusual Bcell origin and an expansion of polyclonal B cells in peripheral blood. Blood 2004;104(7):2134–42. DOI: 10.1182/blood2003114024
95. Babbage G., Townsend M., Zojer N. et al. IgMexpressing Waldenstrom’s macroglobulinemia tumor cells reveal a potential for isotype switch events in vivo. Leukemia 2007;21(4):827–30. DOI: 10.1038/sj.leu.2404538
96. García-Sanz R., Hunter Z.R., Poulain S. et al. New developments in the diagnosis and characterization of Waldenström’s macroglobulinemia. Expert Rev Hematol 2023;16(11):835–47. DOI: 10.1080/17474086.2023.2270779
97. Seegmiller A.C., Xu Y., McKenna R.W. et al. Immunophenotypic differentiation between neoplastic plasma cells in mature B-cell lymphoma vs plasma cell myeloma. Am J Clin Pathol 2007;127(2):176–81. DOI: 10.1309/5EL22BH45PHUPM8P
98. Hunter Z.R., Branagan A.R., Manning R. et al. CD5, CD10, and CD23 expression in Waldenstrom’s macroglobulinemia. Clin Lymphoma 2005;5(4):246–9. DOI: 10.3816/clm.2005.n.008
99. Pangalis G.A., Kyrtsonis M.C., Kontopidou F.N. et al. Differential diagnosis of Waldenstrom’s macroglobulinemia and other B-cell disorders. Clin Lymphoma 2005;5(4):235–40. DOI: 10.3816/clm.2005.n.006
100. Paiva B., Corchete L.A., Vidriales M.B. et al. The cellular origin and malignant transformation of Waldenström macroglobulinemia. Blood 2015;125(15):2370–80. DOI: 10.1182/blood201409602565
101. Marti G.E., Rawstron A.C., Ghia P. et al. Diagnostic criteria for monoclonal B-cell lymphocytosis. Br J Haematol 2005;130(3): 325–32. DOI: 10.1111/j.13652141.2005.05550.x
102. Rosado F.G., Morice W.G., He R. et al. Immunophenotypic features by multiparameter flow cytometry can help distinguish low grade Bcell lymphomas with plasmacytic differentiation from plasma cell proliferative disorders with an unrelated clonal B-cell process. Br J Haematol 2015;169(3):368–76. DOI: 10.1111/bjh.13303
Рецензия
Для цитирования:
Гальцева И.В., Цой Ю.А., Грачев А.Е., Капранов Н.М., Никифорова К.А., Давыдова Ю.О., Куликов А.А., Звонков Е.Е., Паровичникова Е.Н. Использование многоцветной проточной цитометрии для диагностики макроглобулинемии Вальденстрема. Онкогематология. 2025;20(1):128-138. https://doi.org/10.17650/1818-8346-2025-20-1-128-138
For citation:
Galtseva I.V., Tsoy Yu.A., Grachev A.E., Kapranov N.M., Nikiforova K.A., Davydova Yu.O., Kulikov A.A., Zvonkov E.E., Parovichnikova E.N. Multicolor flow cytometry in the diagnosis of Waldenstrom macroglobulinemia. Oncohematology. 2025;20(1):128-138. (In Russ.) https://doi.org/10.17650/1818-8346-2025-20-1-128-138