Primary and secondary myelofibrosis: ophthalmological manifestations at onset and during therapy
https://doi.org/10.17650/1818-8346-2025-20-1-95-113
Abstract
Background. There is little information about ophthalmological manifestations of myelofibrosis (MF), their dependence on hematological, morphological, genetic parameters, and eye damage during therapy, and there are no publications on eye changes during targeted therapy.
Aim. To study the spectrum and frequency of ophthalmological manifestations of primary, post‑polycythemic, post‑thrombocythemic MF at the diagnosis and during therapy.
Materials and methods. A prospective single‑center controlled study included 128 people: 98 patients with primary, post‑polycythemic, post‑thrombocythemic MF in the chronic phase (17 at onset, 30 long‑term receiving hydroxycarbamide, 51 long‑term receiving ruxolitinib), observed at the botkin Hospital and 30 healthy participants of the control group. Ophthalmological and genetic studies were conducted.
Results. It has been established that ophthalmologic manifestations accompany MF already at the onset of the disease: significantly higher frequency of retinal angiopathy and angioretinopathy, decreased retinal sensitivity in the macular area, remodeling of the foveolar avascular zone (increased perimeter, decreased circumference index), low vascular and perfusion density of the retina, choroid and optic disc, decreased thickness of the subfoveolar choroid compared with the control group. Ruxolitinib MF therapy is safe for the visual organ according to the assessed parameters and has a positive therapeutic effect compared with MF onset and hydroxycarbamide therapy: such patients demonstrated smaller perimeter of the foveolar avascular zone, higher vascular and perfusion density of the retina, choroid and optic disc. There was a statistically significant association between an increased frequency of retinal angiopathy and angioritinopathy with a platelet count less than 100 × 109 / L, erythrocytes less than 3.7 × 1012 / L, hemoglobin level less than 100 g / L, high degree of fibrosis (MF‑3), presence of the JAK2 v617F mutation; the increased frequency of angiopathy associated with the leukocyte count less than 4.0 × 109 / L and more than 9.0 × 109 / L, erythrocytes more than 5.1 × 1012 / L, high risk according to DIPSS (Dynamic International Prognostic Scoring System). Vascular and perfusion density of the choriocapillary layer in patients at the onset of primary MF significantly correlated with the level of platelets and hemoglobin.
Conclusion. The conducted search for ophthalmological manifestations on a large cohort of MF patients at the onset and during therapy is largely innovative and requires further research, and also confirms the need to include a consultation with an ophthalmologist in the examination algorithm for MF patients.
Keywords
About the Authors
O. Yu. VinogradovaRussian Federation
125284; 5 2nd Botkinskiy Proezd; 117198; 1 Samory Mashela St.; 117513; 1 Ostrovityanova St.; Moscow
L. B. Egoryan
Russian Federation
125284; 5 2nd Botkinskiy Proezd; Moscow
D. I. Shikhbabaeva
Russian Federation
125284; 5 2nd Botkinskiy Proezd; Moscow
A. L. Neverova
Russian Federation
Anna Leonidovna Neverova
125284; 5 2nd Botkinskiy Proezd; Moscow
M. M. Pankrashkina
Russian Federation
125284; 5 2nd Botkinskiy Proezd; Moscow
L. K. Moshetova
Russian Federation
125993; Build. 1, 2 / 1 Barrikadnaya St.; Moscow
References
1. Khoury J.D., Solary E., Abla O. et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia 2022;36:1703–19. DOI: 10.1038/s41375022016131
2. Arber D.A., Orazi A., Hasserjian R.P. et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood 2022;140:1200–28. DOI: 10.1182/blood.2022015850
3. Marneth A.E., Mullally A. The molecular genetics of myeloproliferative neoplasms. Cold Spring Harb Perspect Med 2020;10(2):a034876. DOI: 10.1101/cshperspect.a034876
4. Morsia E., Torre E., Poloni A. et al. Molecular pathogenesis of myeloproliferative neoplasms: from molecular landscape to therapeutic implications. Int J Mol Sci 2022;23(9):4573. DOI: 10.3390/ijms23094573
5. Greenfield G., McMullin M.F., Mills K. Molecular pathogenesis of the myeloproliferative neoplasms. J Hematol Oncol 2021;14(1):103. DOI: 10.1186/s1304502101116z
6. AlGhamdi Y.A., Lake J., Bagg A. et al. Triplenegative primary myelofibrosis: a Bone Marrow Pathology Group study. Mod Pathol 2023;36(3):100016. DOI: 10.1016/j.modpat.2022.100016
7. Luque Paz D., Kralovics R., Skoda R.C. Genetic basis and molecular profiling in myeloproliferative neoplasms. Blood 2023;141(16):1909–21. DOI: 10.1182/blood.2022017578
8. Tefferi A., Guglielmelli P., Larson D.R. et al. Longterm survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 2014;124(16):2507–615. DOI: 10.1182/blood201405579136
9. Tharakan S., Mascarenhas J., Tremblay D. Understanding triple negative myeloproliferative neoplasms: pathogenesis, clinical features, and management. Leuk Lymphoma 2024;65(2):158–67. DOI: 10.1080/10428194.2023.2277674
10. Melikyan A.L., Subortseva I.N., Kovrigina A.M. National clinical guidelines on diagnosis and treatment of Phnegative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, and primary myelofibrosis) (edition 2024). Klinicheskaya onkogematologiya = Clinical Oncohematology 2024;17(3):291–334. (In Russ.). DOI: 10.21320/250021392024173291334
11. Yuen H.K.L., Mahesh L., Tse R.K.K. et al. Orbital sclerosing extramedullary hematopoietic tumor. Arch Ophthalmol 2005;123:689–91. DOI: 10.1001/archopht.123.5.689
12. Lin A.L., Burnham J.M., Pang V. et al. Ocular manifestations of primary myelofibrosis. Retin Cases Brief Rep 2016;10(4):364–7. DOI: 10.1097/ICB.0000000000000264
13. Billot S., Kouroupi E.G., Le Guilloux J. et al. Neurological disorders in essential thrombocythemia. Haematologica 2011;96:1866–9. DOI: 10.3324/haematol.2011.050005
14. Liisborg C., Hasselbalch H.C., Sørensen T.L. Ocular manifestations in patients with Philadelphianegative myeloproliferative neoplasms. Cancers (Basel) 2020;12(3):573. DOI: 10.3390/cancers12030573
15. Yang H.S., Joe S.G., Kim J.G. et al. Delayed choroidal and retinal blood flow in polycythaemia vera patients with transient ocular blindness: a preliminary study with fluorescein angiography. Br J Haematol 2013;161:745–7. DOI: 10.1111/bjh.12290
16. Barbui T., Thiele J., Gisslinger H. et al. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and indepth discussion. Blood Cancer J 2018;8(2):15. DOI: 10.1038/s414080180054y
17. Tefferi A., Thiele J., Orazi A. et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood 2007;110(4):1092–7. DOI: 10.1182/blood200704083501
18. Pardanani A., Lasho T.L., Finke C. et al. Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617Fnegative polycythemia vera. Leukemia 2007;21(9):1960–3. DOI: 10.1038/sj.leu.2404810
19. Kristinsson S.Y., Landgren O., Samuelsson J. et al. Autoimmunity and the risk of myeloproliferative neoplasms. Haematologica 2010;95(7):1216–20. DOI: 10.3324/haematol.2009.020412
20. Barbui T., Carobbio A., Finazzi G. et al. Inflammation and thrombosis in essential thrombocythemia and polycythemia vera: different role of Creactive protein and pentraxin 3. Haematologica 2011;96(2):315–8. DOI: 10.3324/haematol.2010.031070
21. Melikyan A.L., Kovrigina A.M., Subortseva I.N. National clinical guidelines on diagnosis and treatment of Phnegative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, and primary myelofibrosis) (edition 2020). Klinicheskaya onkogematologiya = Clinical Oncohematology 2021;14(2):262–98. (In Russ.). DOI: 10.21320/250021392021142262298
22. Abe M., Suzuki K., Inagaki O. et al. A novel MPL point mutation resulting in thrombopoietinindependent activation. Leukemia 2002;16(8):1500–6. DOI: 10.1038/sj.leu.2402554
23. Li M.M., Datto M., Duncavage E.J. et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn 2017;19(1):4–23. DOI: 10.1016/j.jmoldx.2016.10.002
24. Horak P., Griffith M., Danos A.M. et al. Standards for the classification of pathogenicity of somatic variants in cancer (oncogenicity): joint recommendations of Clinical Genome Resource (ClinGen), Cancer Genomics Consortium (CGC), and Variant Interpretation for Cancer Consortium (VICC). Genet Med 2022;24(5):986–98. DOI: 10.1016/j.gim.2022.01.001
25. Pemmaraju N., Bose P., Rampal R. et al. Ten years after ruxolitinib approval for myelofibrosis : a review of clinical efficacy. Leuk Lymphoma 2023;64(6):1063–81. DOI: 10.1080/10428194.2023.2196593
26. Vinogradova O.Yu., Pankraskina M.M., Neverova A.L. et al. Clinical and hematological factors predicting the effectiveness of ruxolitinib in primary and secondary myelofibrosis. Results of a prospective singlecenter study. Onkogematologiya = Oncohematology 2024;19(3):16–33. (In Russ.). DOI: 10.17650/1818834620241931633
27. Coleman D.J., Silverman R.H., Rondeau M.J. et al. Agerelated macular degeneration: choroidal ischaemia? Br J Ophthalmol 2013;97(8):1020–3. DOI: 10.1136/bjophthalmol2013303143
28. Haskes C., Gagnon K. Retinal manifestations of idiopathic myelofibrosis, a hematologic disorder. J Am Optom Assoc 1998;69(5):319–28.
29. Pekel G., Doğu M.H., Sarı H.I. et al. Retinal vessel caliber, choroidal thickness and ocular pulse amplitude measurements in essential thrombocythemia. Middle East Afr J Ophthalmol 2016;23(1):84–8. DOI: 10.4103/09749233.171827
30. Pekel G., Doğu M.H., Keskin A. et al. Subfoveal choroidal thickness is associated with blood hematocrit level. Ophthalmologica 2015;234(1):55–9. DOI: 10.1159/000433449
31. Vicini G., Nicolosi C., Malandrino D. et al. Leukostasis retinopathy with leukemic infiltrates as onset manifestation of chronic myeloid leukemia: a case report. Eur J Ophthalmol 2021;31(5):NP116–21. DOI: 10.1177/1120672120930679
32. BuxhoferAusch V., Steurer M., Sormann S. et al. Impact of white blood cells on thrombotic risk in patients with optimized platelet count in essential thrombocythemia. Eur J Haematol 2018;101(2):131–5. DOI: 10.1111/ejh.13070
33. Carobbio A., Ferrari A., Masciulli A. et al. Leukocytosis and thrombosis in essential thrombocythemia and polycythemia vera : a systematic review and metaanalysis. Blood Adv 2019;3(11):1729–37. DOI: 10.1182/bloodadvances.2019000211
34. Parasuraman S., Yu J., Paranagama D. et al. Elevated white blood cell levels and thrombotic events in patients with polycythemia vera: a realworld analysis of veterans health administration data. Clin Lymphoma Myeloma Leuk 2020;20(2):63–9. DOI: 10.1016/j.clml.2019.11.010
35. Pircher J., Engelmann B., Massberg S., Schulz C. Platelet-neutrophil crosstalk in atherothrombosis. Thromb Haemost 2019;119(8):1274–82. DOI: 10.1055/s00391692983
36. Liu T.Y.A., Smith B.D., Mackey K. et al. Retinal vascular changes on optical coherence tomography angiography and ultrawidefield fluorescein angiography in patients with chronic leukemia. J VitreoRetin Dis 2019;3(6):420–7. DOI: 10.1177/2474126419865819
37. Silva P.S., Cavallerano J.D., Sun J.K. et al. Peripheral lesions identified by mydriatic ultrawide field imaging: distribution and potential impact on diabetic retinopathy severity. Ophthalmology 2013;120(12):2587–95. DOI: 10.1016/j.ophtha.2013.05.004
38. Vannucchi A.M., Lasho T.L., Guglielmelli P. et al. Mutations and prognosis in primary myelofibrosis. Leukemia 2013;27(9):1861–9. DOI: 10.1038/leu.2013.119
39. Vannucchi A.M., Guglielmelli P., Rotunno G. et al. Mutation-Enhanced International Prognostic Scoring System (MIPSS) for primary myelofibrosis: an AGIMM & IWGMRT Project. Blood 2014;124(21):405. DOI: 10.1182/blood.V124.21.405.405
40. Vinogradova O.Yu., Shikhbabaeva D.I., Kobzev Yu.N. et al. Molecular markers as possible efficacy predictors of targeted therapy for myelofibrosis: singlecenter study. Onkogematologiya = Oncohematology 2023;18(4):115–34. (In Russ.). DOI: 10.17650/181883462023184115134
41. Mancuso S., Accurso V., Santoro M. et al. The essential thrombocythemia, thrombotic risk stratification, and cardiovascular risk factors. Adv Hematol 2020;2020:9124821. DOI: 10.1155/2020/9124821
42. Passamonti F., Cervantes F., Vannucchi A.M. et al. Dynamic international prognostic scoring system (DIPSS) predicts progression to acute myeloid leukemia in primary myelofibrosis. Blood 2010;116(15):2857–8. DOI: 10.1182/blood201006293415
43. ArellanoRodrigo E., AlvarezLarrán A., Reverter J.C. et al. Platelet turnover, coagulation factors, and soluble markers of platelet and endothelial activation in essential thrombocythemia: relationship with thrombosis occurrence and JAK2 V617F allele burden. Am J Hematol 2009;84(2):102–8. DOI: 10.1002/ajh.21338
44. Falanga A., Marchetti M., Vignoli A. et al. V617F JAK2 mutation in patients with essential thrombocythemia: relation to platelet, granulocyte, and plasma hemostatic and inflammatory molecules [published correction appears in Exp Hematol 2007;35(9):1476]. Exp Hematol 2007;35(5):702–11. DOI: 10.1016/j.exphem.2007.01.053
45. Hauschner H., Bokstad Horev M., Misgav M. et al. Platelets from Calreticulin mutated essential thrombocythemia patients are less reactive than JAK2 V617F mutated platelets. Am J Hematol 2020;95(4):379–86. DOI: 10.1002/ajh.25713
Review
For citations:
Vinogradova O.Yu., Egoryan L.B., Shikhbabaeva D.I., Neverova A.L., Pankrashkina M.M., Moshetova L.K. Primary and secondary myelofibrosis: ophthalmological manifestations at onset and during therapy. Oncohematology. 2025;20(1):95-113. (In Russ.) https://doi.org/10.17650/1818-8346-2025-20-1-95-113