Preview

Oncohematology

Advanced search

Targeted therapy of newly diagnosed FLT3-mutated acute myeloid leukemia. A single-center ambispective cohort study

https://doi.org/10.17650/1818-8346-2025-20-1-55-64

Abstract

   Background. FMS‑like tyrosine kinase 3 (FLT3) gene mutations are the most frequently detected genetic aberrations in adult patients with newly diagnosed acute myeloid leukemia (AML), identified in approximately 30 % of patients. The addition of midostaurin, an FLT3 tyrosine kinase inhibitor, to standard therapy and after allogeneic hematopoietic stem cell transplantation (allo‑HSCT) improves overall (OS) and event‑free survival (EFS).

   Aim. To evaluate the effect of adding midostaurin to standard therapy in adult patients with FLT3‑mutated AML. To evaluate the impact of allo‑HSCT performed in first complete remission on the survival of patients treated in combination with midostaurin.

   Materials and methods. The study enrolled 276 patients with newly diagnosed AML with FLT3 mutation. 153 of them received combination therapy with midostaurin, 123 – first‑line therapy without FLT3 inhibitors. In the combination therapy group allo‑HSCT in first complete remission was performed in 35 (22.9 %) patients.

   Results. The response rate was higher in the combination therapy group and was 84 % versus 66 % in the control group (p < 0.01). with a median follow‑up of 19 (2–130) months, the median OS was not achieved in both groups. The 18‑month OS was 60 % (95 % confidence interval (CI) 50–69) in the midostaurin group and 53 % (95 % CI 43–61) without it (p = 0.12). Median EFS was 11.6 months (95 % CI 9.1–13.8) and 6.7 months (95 % CI 4.2–10.2) respectively (p = 0.046). The 18‑month EFS was 33 % (95 % CI 24–42) and 31 % (95 % CI 23–40). In multivariate analysis, factors associated with worse EFS were older age and FLT3 internal tandem duplication. Age, leukocytosis at the time of diagnosis, and the presence of unfavorable cytogenetic abnormalities had a negative effect on EFS. Midostaurin therapy was associated with EFS improvement. In a landmark analysis with a 6‑month time point, OS was 89 % (95 % CI 69–96) in the allo‑HSCT group versus 38 % without it (95 % CI 20–55) (p = 0.002). EFS was 75 % (95 % CI 50–88) and 13 % (95 % CI 5–26), respectively (p <0.001).

   Conclusion. The addition of midostaurin to standard treatment contributes to an increased response rate and improved survival in patients with FLT3‑mutated AML. Allo‑HSCT in first complete remission remains the preferred option for remission consolidation in patients treated with tyrosine kinase inhibitors.

About the Authors

N. K. Pastukhov
Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I. P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

Nikita Konstantinovich Pastukhov

197022; 6–8 L’va Tolstogo St.; Saint Petersburg



S. N. Bondarenko
Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I. P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

197022; 6–8 L’va Tolstogo St.; Saint Petersburg



A. G. Smirnova
Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I. P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

197022; 6–8 L’va Tolstogo St.; Saint Petersburg



Yu. Yu. Vlasova
Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I. P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

197022; 6–8 L’va Tolstogo St.; Saint Petersburg



D. K. Zhogolev
Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I. P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

197022; 6–8 L’va Tolstogo St.; Saint Petersburg



B. I. Ayubova
Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I. P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

197022; 6–8 L’va Tolstogo St.; Saint Petersburg



O. G. Smykova
Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I. P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

197022; 6–8 L’va Tolstogo St.; Saint Petersburg



N. P. Volkov
Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I. P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

197022; 6–8 L’va Tolstogo St.; Saint Petersburg



I. S. Moiseev
Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I. P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

197022; 6–8 L’va Tolstogo St.; Saint Petersburg



A. D. Kulagin
Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation, I. P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

197022; 6–8 L’va Tolstogo St.; Saint Petersburg



References

1. Ley T.J., Mardis E.R., Ding L. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 2008;456(7218):66–72. DOI: 10.1038/nature07485

2. Cancer Genome Atlas Research Network; Ley T.J., Miller C., Ding L. et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia [published correction appears in N Engl J Med 2013;369(1):98]. N Engl J Med 2013;368(22):2059–74. DOI: 10.1056/NEJMoa1301689

3. Kishtagari A., Levine R.L. The role of somatic mutations in acute myeloid leukemia pathogenesis. Cold Spring Harb Perspect Med 2021;11(4):a034975. DOI: 10.1101/cshperspect.a034975

4. Döhner H., Wei A.H., Appelbaum F.R. et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022;140(12):1345–77. DOI: 10.1182/blood.2022016867

5. Kihara R., Nagata Y., Kiyoi H. et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia 2014;28(8):1586–95. DOI: 10.1038/leu.2014.55

6. Kiyoi H., Kawashima N., Ishikawa Y. FLT3 mutations in acute myeloid leukemia: therapeutic paradigm beyond inhibitor development. Cancer Sci 2020;111(2):312–22. DOI: 10.1111/cas.14274

7. Gale R.E., Green C., Allen C. et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 2008;111(5):2776–84. DOI: 10.1182/blood­2007­08­109090

8. Kindler T., Lipka D.B., Fischer T. FLT3 as a therapeutic target in AML: still challenging after all these years. Blood 2010;116(24):5089–102. DOI: 10.1182/blood­2010­04­261867

9. Fröhling S., Schlenk R.F., Breitruck J. et al. Acute myeloid leukemia. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood 2002;100(13):4372–80. DOI: 10.1182/blood­2002­05­1440

10. Radzhabova A.M., Voloshin S.V., Martynkevich I.S. et al. Role of FLT3 gene mutations in acute myeloid leukemia: effect on course of disease and results of therapy. Geni i kletki = Genes and Cells 2019;14(1):55–61. (In Russ.). DOI: 10.23868/201903007

11. Ravandi F., Kantarjian H., Faderl S. et al. Outcome of patients with FLT3­mutated acute myeloid leukemia in first relapse. Leuk Res 2010;34(6):752–6. DOI: 10.1016/j.leukres.2009.10.001

12. Rücker F.G., Du L., Luck T.J. et al. Molecular landscape and prognostic impact of FLT3­ITD insertion site in acute myeloid leukemia: RATIFY study results. Leukemia 2022;36(1):90–9. DOI: 10.1038/s41375­021­01323­0

13. Döhner H., Estey E., Grimwade D. et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017;129(4):424–47. DOI: 10.1182/blood­2016­08­733196

14. Bacher U., Haferlach C., Kern W. et al. Prognostic relevance of FLT3­TKD mutations in AML: the combination matters – an analysis of 3082 patients. Blood 2008;111(5):2527–37. DOI: 10.1182/blood­2007­05­091215

15. Li S., Li N., Chen Y. et al. FLT3­TKD in the prognosis of patients with acute myeloid leukemia: a meta­analysis. Front Oncol 2023;13:1086846. DOI: 10.3389/fonc.2023.1086846

16. Garcia J.S., Stone R.M. The Development of FLT3 inhibitors in acute myeloid leukemia. Hematol Oncol Clin North Am 2017;31(4):663–80. DOI: 10.1016/j.hoc.2017.03.002

17. Stone R.M., Mandrekar S.J., Sanford B.L. et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med 2017;377(5):454–64. DOI: 10.1056/NEJMoa1614359

18. Döhner H., Weber D., Krzykalla J. et al. Midostaurin plus intensive chemotherapy for younger and older patients with AML and FLT3 internal tandem duplications. Blood Adv 2022;6(18):5345–55. DOI: 10.1182/bloodadvances.2022007223

19. Schlenk R.F., Weber D., Fiedler W. et al. Midostaurin added to chemotherapy and continued single­agent maintenance therapy in acute myeloid leukemia with FLT3­ITD. Blood 2019;133(8):840–51. DOI: 10.1182/blood­2018­08­869453

20. Sierra J., Montesinos P., Thomas X. et al. Midostaurin plus daunorubicin or idarubicin for young and older adults with FLT3 mutated AML: a phase 3b trial. Blood Adv 2023;7(21):6441–50. DOI: 10.1182/bloodadvances.2023009847

21. Bondarenko S.N., Smirnova A.G., Ayubova B.I. et al. Efficacy and safety of midostaurin combined with chemotherapy in newly diagnosed acute myeloid leukemia with FLT3 mutation. Klinicheskaya onkogematologiya = Clinical Oncohematology 2022;15(2):167–75. (In Russ.). DOI: 10.21320/2500­2139­2022­15­2­167­175

22. Motyko E.V., Blau O.V., Polushkina L.B. et al. Prognostic value of genetic mutations in patients with acute myeloid leukemias: results of a cooperative study of hematology clinics of Saint Petersburg (Russia) and Charite Clinic (Germany). Klinicheskaya onkogematologiya = Clinical Oncohematology 2019;12(2):211–9. (In Russ.). DOI: 10.21320/2500­2139­2019­12­2­211­219

23. Capria S., Trisolini S.M., Torrieri L. et al. Real­life management of FLT3­mutated AML: single­centre experience over 24 years. Cancers (Basel) 2024;16(16):2864. DOI: 10.3390/cancers16162864

24. Kennedy A., Patel S., Ramanathan M. et al. Midostaurin for FLT3-mutated AML: a real­world analysis of effectiveness and infection risk at a single center. Ann Hematol 2024;103(3):1031–3. DOI: 10.1007/s00277­024­05614­1

25. Bazzell B.G., Marini B.L., Benitez L.L. et al. Real world use of FLT3 inhibitors for treatment of FLT3+ acute myeloid leukemia (AML): a single center, propensity­score matched, retrospective cohort study. J Oncol Pharm Pract 2022;28(6):1315–25. DOI: 10.1177/10781552211020815

26. Grimwade D., Hills R.K., Moorman A.V. et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 2010;116(3):354–65. DOI: 10.1182/blood­2009­11­254441

27. Konopleva M., Thirman M.J., Pratz K.W. et al. Impact of FLT3 mutation on outcomes after venetoclax and azacitidine for patients with treatment­naïve acute myeloid leukemia. Clin Cancer Res 2022;28(13):2744–52. DOI: 10.1158/1078­0432.CCR­21­3405

28. Zhu R., Li L., Nguyen B. et al. FLT3 tyrosine kinase inhibitors synergize with BCL­2 inhibition to eliminate FLT3/ITD acute leukemia cells through BIM activation. Signal Transduct Target Ther 2021;6(1):186. DOI: 10.1038/s41392­021­00578­4

29. Molica M., Perrone S., Rossi M., Giannarelli D. The impact of different FLT3­-inhibitors on overall survival of de novo acute myeloid leukemia: a network meta­analysis. Leuk Res 2024;144:107549. DOI: 10.1016/j.leukres.2024.107549

30. Maziarz R.T., Levis M., Patnaik M.M. et al. Midostaurin after allogeneic stem cell transplant in patients with FLT3­-internal tandem duplication­positive acute myeloid leukemia. Bone Marrow Transplant 2021;56(5):1180–9. DOI: 10.1038/s41409­020­01153­1

31. Ashouri K., Chennapan K., Martynova A. et al. Post­stem cell transplant maintenance in FLT3<sup>mut</sup> acute myeloid leukemia – a retrospective analysis: outcomes are improved with midostaurin but not with gilteritinib [published correction appears in EJHaem 2024;5(3):647]. EJHaem 2024;5(2):423–7. DOI: 10.1002/jha2.885


Review

For citations:


Pastukhov N.K., Bondarenko S.N., Smirnova A.G., Vlasova Yu.Yu., Zhogolev D.K., Ayubova B.I., Smykova O.G., Volkov N.P., Moiseev I.S., Kulagin A.D. Targeted therapy of newly diagnosed FLT3-mutated acute myeloid leukemia. A single-center ambispective cohort study. Oncohematology. 2025;20(1):55-64. (In Russ.) https://doi.org/10.17650/1818-8346-2025-20-1-55-64

Views: 237


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)