Феномен клонального гемопоэза: этиология, классификация и прогностическая роль
https://doi.org/10.17650/1818-8346-2025-20-1-28-54
Аннотация
Феномен клонального гемопоэза (КГ) стал объектом интенсивных исследований с 2014 г., чему способствовало развитие технологии высокопроизводительного секвенирования. С возрастом увеличивается распространенность КГ, который связан с повышенным риском онкогематологических и сердечно‑сосудистых заболеваний, а также общей летальностью. Возникновение соматических мутаций в гемопоэтических стволовых клетках является основным механизмом КГ, в результате которого нарушается баланс между клеточным делением и дифференцировкой, что приводит к экспансии клонов клеток с определенными генетическими изменениями. В статье рассматривается понятие КГ и его различных форм, включая КГ неопределенного и онкогенного потенциала, а также связанные состояния, такие как идиопатическая цитопения неопределенного значения, клональная цитопения неопределенного значения и идиопатическая дисплазия неопределенного значения. КГ определяют при наличии соматических мутаций в генах миелоидной направленности (наиболее часто – DNMT3A, TET2 и ASXL1) в кроветворных клетках, которые могут присутствовать как у здоровых людей, так и у пациентов с гематологическими неоплазиями. Подчеркнута важность разграничения различных форм КГ в зависимости от их прогностической значимости и потенциального риска трансформации в злокачественные новообразования. Мутации, связанные с КГ, могут увеличивать риск сердечно‑сосудистых заболеваний, сахарного диабета 2‑го типа, хронической обструктивной болезни легких, венозных тромбозов, а также миелоидных и лимфоидных новообразований. Отмечена необходимость разработки формализованных диагностических критериев и прогностических моделей для стратификации риска у лиц с различными формами КГ, что может значительно повлиять на подходы к диагностике и возможность терапии данных состояний.
Ключевые слова
Об авторах
Е. О. КуневичРоссия
Евгений Олегович Куневич
194291; пр-кт Луначарского, 45; Санкт-Петербург
М. А. Михалева
Россия
191024; ул. 2-я Советская, 16; Санкт-Петербург
О. Б. Крысюк
Россия
191024; ул. 2-я Советская, 16; 199034; Университетская
набережная, 7–9; Санкт-Петербург
А. Н. Богданов
Россия
199034; Университетская набережная, 7–9; Санкт-Петербург; 197706; ул. Борисова, 9; Санкт-Петербург; Сестрорецк
А. А. Жернякова
Россия
191024; ул. 2-я Советская, 16; Санкт-Петербург
С. В. Волошин
Россия
194291; пр-кт Луначарского, 45; 194044; ул. Академика Лебедева, 6; Санкт-Петербург
Список литературы
1. Lyon M.F. Sex chromatin and gene action in the mammalian Xchromosome. Am J Hum Genet 1962;14:135–48.
2. Beutler E., Yeh M., Fairbanks V.F. The normal human female as a mosaic of Xchromosome activity: studies using the gene for C6PDdeficiency as a marker. Proc Natl Acad Sci USA 1962;48(1):9–16. DOI: 10.1073/pnas.48.1.9
3. Xie M., Lu C., Wang J. et al. Agerelated mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 2014;20(12):1472–8. DOI: 10.1038/nm.3733
4. Genovese G., Kähler A.K., Handsaker R.E. et al. Clonal hematopoiesis and bloodcancer risk inferred from blood DNA sequence. N Engl J Med 2014;371(26):2477–87. DOI: 10.1056/NEJMoa1409405
5. Jaiswal S., Fontanillas P., Flannick J. et al. Agerelated clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014;371(26):2488–98. DOI: 10.1056/NEJMoa1408617
6. Knudson A.G. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971;68:820–3. DOI: 10.1073/pnas.68.4.820
7. Vogelstein B., Papadopoulos N., Velculescu V.E. et al. Cancer genome landscapes. Science 2013;339:1546–58. DOI: 10.1126/science.1235122
8. LeeSix H., Øbro N.F., Shepherd M.S. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 2018;561:473–8. DOI: 10.1038/s4158601804970
9. FilipekGorzała J., Kwiecińska P., Szade A., Szade K. The dark side of stemness – the role of hematopoietic stem cells in development of blood malignancies. Front Oncol 2024;14:1308709. DOI: 10.3389/fonc.2024.1308709
10. NakamuraIshizu A., Takizawa H., Suda T. The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development 2014;141(24):4656–66. DOI: 10.1242/dev.106575
11. Loeffler D., Schneiter F., Wang W. et al. Asymmetric organelle inheritance predicts human blood stem cell fate. Blood 2022;139(13):2011–23. DOI: 10.1182/blood.2020009778
12. Loeffler D., Schroeder T. Symmetric and asymmetric activation of hematopoietic stem cells. Curr Opin Hematol 2021;28(4):262–8. DOI: 10.1097/MOH.0000000000000644
13. Mitchell E., Spencer Chapman M., Williams N. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 2022;606(7913):343–50. DOI: 10.1038/s4158602204786y
14. Welch J.S., Ley T.J., Link D.C. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012;150(2):264–78. DOI: 10.1016/j.cell.2012.06.023
15. Bowman R.L., Busque L., Levine R.L. Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 2018;22:157–70. DOI: 10.1016/j.stem.2018.01.011
16. Steensma D.P., Bejar R., Jaiswal S. et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015;126(1):9–16. DOI: 10.1182/blood201503631747
17. Steensma D.P. Clinical implications of clonal hematopoiesis. Mayo Clin Proc 2018;93:1122–30. DOI: 10.1016/j.mayocp.2018.04.002
18. Coombs C.C., Zehir A., Devlin S.M. et al. Therapyrelated clonal hematopoiesis in patients with nonhematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 2017;21(3):374–82.e4. DOI: 10.1016/j.stem.2017.07.010
19. Giani A.M., Gallo G.R., Gianfranceschi L., Formenti G. Long walk to genomics: history and current approaches to genome sequencing and assembly. Comput Struct Biotechnol J 2019;18: 9–19. DOI: 10.1016/j.csbj.2019.11.002
20. Chen E.Y., Tan C.M., Kou Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 2013;14:128. DOI: 10.1186/1471210514128
21. Kuleshov M.V., Jones M.R., Rouillard A.D. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 2016;44(W1):W90–7. DOI: 10.1093/nar/gkw377
22. Xie Z., Bailey A., Kuleshov M.V. et al. Gene set knowledge discovery with Enrichr. Curr Protoc 2021;1(3):e90. DOI: 10.1002/cpz1.90
23. Linder D., Gartler S.M. Glucose6phosphate dehydrogenase mosaicism: utilization as a cell marker in the study of leiomyomas. Science 1965;150(3692):67–9. DOI: 10.1126/science.150.3692.67
24. Rowley J.D. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973;243:290–3. DOI: 10.1038/243290a0
25. Fialkow P.J. The origin and development of human tumors studied with cell markers. N Engl J Med 1974;291(1):26–35. DOI: 10.1056/NEJM197407042910109
26. Busque L., Gilliland D.G. Xinactivation analysis in the 1990<sup>s</sup>: promise and potential problems. Leukemia 1998;12(2):128–35. DOI: 10.1038/sj.leu.2400936
27. Ayachi S., Buscarlet M., Busque L. 60 Years of clonal hematopoiesis research: from Xchromosome inactivation studies to the identification of driver mutations. Exp Hematol 2020;83:2–11. DOI: 10.1016/j.exphem.2020.01.008
28. Vogelstein B., Fearon E.R., Hamilton S.R., Feinberg A.P. Use of restriction fragment length polymorphisms to determine the clonal origin of human tumors. Science 1985;227(4687):642–5. DOI: 10.1126/science.2982210
29. Gilliland D.G., Blanchard K.L., Levy J. et al. Clonality in myeloproliferative disorders: analysis by means of the polymerase chain reaction. Proc Natl Acad Sci USA 1991;88(15):6848–52. DOI: 10.1073/pnas.88.15.6848
30. Prchal J.T., Guan Y.L. A novel clonality assay based on transcriptional analysis of the active X chromosome. Stem Cells 1993;11(Suppl 1):62–5. DOI: 10.1002/stem.5530110613
31. Luhovy M., Liu Y., Belickova M. et al. A novel clonality assay based on transcriptional polymorphism of X chromosome gene p55. Biol Blood Marrow Transplant 1995;1(2):81–7.
32. Fey M.F., Peter H.J., Hinds H.L. et al. Clonal analysis of human tumors with M27 beta, a highly informative polymorphic X chromosomal probe. J Clin Invest 1992;89(5):1438–44. DOI: 10.1172/JCI115733
33. Fey M.F., LiechtiGallati S., von Rohr A. et al. Clonality and Xinactivation patterns in hematopoietic cell populations detected by the highly informative M27 beta DNA probe. Blood 1994;83(4):931–8.
34. Busque L., Mio R., Mattioli J. et al. Nonrandom Xinactivation patterns in normal females: lyonization ratios vary with age. Blood 1996;88(1):59–65.
35. Sandovici I., Naumova A.K., Leppert M. et al. A longitudinal study of Xinactivation ratio in human females. Hum Genet 2004;115(5):387–92. DOI: 10.1007/s0043900411778
36. Kristiansen M., Knudsen G.P., Bathum L. et al. Twin study of genetic and aging effects on X chromosome inactivation. Eur J Hum Genet 2005;13(5):599–606. DOI: 10.1038/sj.ejhg.5201398
37. Busque L., Patel J.P., Figueroa M.E. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 2012;44(11):1179–81. DOI: 10.1038/ng.2413
38. Testa U., Castelli G., Pelosi E. Clonal hematopoiesis: role in hematologic and nonhematologic malignancies. Mediterr J Hematol Infect Dis 2022;14(1):e2022069. DOI: 10.4084/MJHID.2022.069
39. Laurie C.C., Laurie C.A., Rice K. et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 2012;44(6):642–50. DOI: 10.1038/ng.2271
40. Jaiswal S., Ebert B.L. Clonal hematopoiesis in human aging and disease. Science 2019;366(6465):eaan4673. DOI: 10.1126/science.aan4673
41. Zink F., Stacey S.N., Norddahl G.L. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 2017;130(6):742–52. DOI: 10.1182/blood201702769869
42. Young A.L., Challen G.A., Birmann B.M., Druley T.E. Clonal haematopoiesis harbouring AMLassociated mutations is ubiquitous in healthy adults. Nat Commun 2016;7:12484. DOI: 10.1038/ncomms12484
43. Abelson S., Collord G., Ng S.W.K. et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 2018;559:400–4. DOI: 10.1038/s4158601803176
44. Wong W.H., Tong R.S., Young A.L., Druley T.E. Rare event detection using errorcorrected DNA and RNA sequencing. J Vis Exp 2018;(138):57509. DOI: 10.3791/57509
45. Shlush L.I. Agerelated clonal hematopoiesis. Blood 2018;131(5):496–504. DOI: 10.1182/blood201707746453
46. De Haan G., Lazare S.S. Aging of hematopoietic stem cells. Blood 2018;131(5):479–87. DOI: 10.1182/blood201706746412
47. Challen G.A., Sun D., Jeong M. et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 2011;44(1):23–31. DOI: 10.1038/ng.1009
48. Jeong M., Park H.J., Celik H. et al. Loss of Dnmt3a immortalizes hematopoietic stem cells in vivo. Cell Rep 2018;23(1):1–10. DOI: 10.1016/j.celrep.2018.03.025
49. MoranCrusio K., Reavie L., Shih A. et al. Tet2 loss leads to increased hematopoietic stem cell selfrenewal and myeloid transformation. Cancer Cell 2011;20(1):11–24. DOI: 10.1016/j.ccr.2011.06.001
50. Quivoron C., Couronné L., Valle D.V. et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 2011;20(1):25–38. DOI: 10.1016/j.ccr.2011.06.003
51. Jones A.V., Chase A., Silver R.T. et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet 2009;41(4):446–9. DOI: 10.1038/ng.334
52. Kilpivaara O., Mukherjee S., Schram A.M. et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)positive myeloproliferative neoplasms. Nat Genet 2009;41(4):455–9. DOI: 10.1038/ng.342
53. Vas V., Senger K., Dörr K. et al. Aging of the microenvironment influences clonality in hematopoiesis. PLoS One 2012;7(8):e42080. DOI: 10.1371/journal.pone.0042080
54. Bick A.G., Weinstock J.S., Nandakumar S.K. et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 2020;586(7831):763–8. DOI: 10.1038/s4158602028192
55. Cook E.K., Izukawa T., Young S. et al. Comorbid and inflammatory characteristics of genetic subtypes of clonal hematopoiesis. Blood Adv 2019;3(16):2482–6. DOI: 10.1182/bloodadvances.2018024729
56. Jaiswal S., Natarajan P., Silver A.J. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 2017;377(2):111–21. DOI: 10.1056/NEJMoa1701719
57. Busque L., Sun M., Buscarlet M. et al. Highsensitivity Creactive protein is associated with clonal hematopoiesis of indeterminate potential. Blood Adv 2020;4(11):2430–8. DOI: 10.1182/bloodadvances.2019000770
58. SanMiguel J.M., Loberg M., Heuer S. et al. Cellextrinsic stressors from the aging bone marrow (BM) microenvironment promote Dnmt3amutant clonal hematopoiesis. Blood 2019;134(Suppl 1):5. DOI: 10.1182/blood2019124511
59. Wong T.N., Ramsingh G., Young A.L. et al. Role of TP53 mutations in the origin and evolution of therapyrelated acute myeloid leukaemia. Nature 2015;518(7540):552–5. DOI: 10.1038/nature13968
60. Lindsley R.C., Saber W., Mar B.G. et al. Prognostic mutations in myelodysplastic syndrome after stemcell transplantation. N Engl J Med 2017;376(6):536–47. DOI: 10.1056/NEJMoa1611604
61. Swisher E.M., Harrell M.I., Norquist B.M. et al. Somatic mosaic mutations in PPM1D and TP53 in the blood of women with ovarian carcinoma. JAMA Oncol 2016;2(3):370–2. DOI: 10.1001/jamaoncol.2015.6053
62. Zajkowicz A., Butkiewicz D., Drosik A. et al. Truncating mutations of PPM1D are found in blood DNA samples of lung cancer patients. Br J Cancer 2015;112(6):1114–20. DOI: 10.1038/bjc.2015.79
63. Ruark E., Snape K., Humburg P. et al. Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature 2013;493(7432):406–10. DOI: 10.1038/nature11725
64. Cardoso M., Paulo P., Maia S., Teixeira M.R. Truncating and missense PPM1D mutations in earlyonset and/or familial/hereditary prostate cancer patients. Genes Chromosomes Cancer 2016;55(12):954–61. DOI: 10.1002/gcc.22393
65. Singh A., Balasubramanian S. The crossroads of cancer therapies and clonal hematopoiesis. Semin Hematol 2024;61(1):16–21. DOI: 10.1053/j.seminhematol.2024.01.006
66. Zhang Y., Yao Y., Xu Y. et al. Pancancer circulating tumor DNA detection in over 10,000 Chinese patients. Nat Commun 2021;12(1):11. DOI: 10.1038/s41467020201628
67. Bolton K.L., Ptashkin R.N., Gao T. et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet 2020;52:1219–26. DOI: 10.1038/s41588020007100
68. Cooper J.N., Young N.S. Clonality in context: hematopoietic clones in their marrow environment. Blood 2017;130(22):2363–72. DOI: 10.1182/blood201707794362
69. Gondek L.P. CHIP: is clonal hematopoiesis a surrogate for aging and other disease? Hematology Am Soc Hematol Educ Program 2021;2021(1):384–9. DOI: 10.1182/hematology.2021000270
70. Yoshizato T., Dumitriu B., Hosokawa K. et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med 2015;373(1):35–47. DOI: 10.1056/NEJMoa1414799
71. Finkel T., Serrano M., Blasco M.A. The common biology of cancer and ageing. Nature 2007;448(7155):767–74. DOI: 10.1038/nature05985
72. LópezOtín C., Blasco M.A., Partridge L. et al. The hallmarks of aging. Cell 2013;153(6):1194–217. DOI: 10.1016/j.cell.2013.05.039
73. Sanada F., Taniyama Y., Muratsu J. et al. Source of chronic inflammation in aging. Front Cardiovasc Med 2018;5:12. DOI: 10.3389/fcvm.2018.00012
74. Leoni C., Montagner S., Rinaldi A. et al. Dnmt3a restrains mast cell inflammatory responses. Proc Natl Acad Sci USA 2017;114(8):E1490–9. DOI: 10.1073/pnas.1616420114
75. Cull A.H., Snetsinger B., Buckstein R. et al. Tet2 restrains inflammatory gene expression in macrophages. Exp Hematol 2017;55:56–70.e13. DOI: 10.1016/j.exphem.2017.08.001
76. Fabre M.A., de Almeida J.G., Fiorillo E. et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature 2022;606(7913):335–42. DOI: 10.1038/s4158602204785z
77. Uddin M.M., Saadatagah S., Niroula A. et al. Longterm longitudinal analysis of 4,187 participants reveals insights into determinants of clonal hematopoiesis. Nat Commun 2024;15(1):7858. DOI: 10.1038/s41467024523029
78. Cacic A.M., Schulz F.I., Germing U. et al. Molecular and clinical aspects relevant for counseling individuals with clonal hematopoiesis of indeterminate potential. Front Oncol 2023;13:1303785. DOI: 10.3389/fonc.2023.1303785
79. Kar S.P., Quiros P.M., Gu M. et al. Genomewide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis. Nat Genet 2022;54(8):1155–66. DOI: 10.1038/s4158802201121z
80. Levin M.G., Nakao T., Zekavat S.M. et al. Genetics of smoking and risk of clonal hematopoiesis. Sci Rep 2022;12(1):7248. DOI: 10.1038/s4159802209604z
81. Dawoud A.A.Z., Tapper W.J., Cross N.C.P. Clonal myelopoiesis in the UK Biobank cohort: ASXL1 mutations are strongly associated with smoking. Leukemia 2020;34(10):2660–72. DOI: 10.1038/s4137502008968
82. Kessler M.D., Damask A., O’Keeffe S. et al. Common and rare variant associations with clonal haematopoiesis phenotypes [published correction appears in Nature 2023;615(7950):E3]. Nature 2022;612(7939):301–9. DOI: 10.1038/s41586022054489
83. Haring B., Reiner A.P., Liu J. et al. Healthy lifestyle and clonal hematopoiesis of indeterminate potential: results from the women’s health initiative. J Am Heart Assoc 2021;10(5):e018789. DOI: 10.1161/JAHA.120.018789
84. Bonnefond A., Skrobek B., Lobbens S. et al. Association between large detectable clonal mosaicism and type 2 diabetes with vascular complications. Nat Genet 2013;45(9):1040–3. DOI: 10.1038/ng.2700
85. Florez M.A., Tran B.T., Wathan T.K. et al. Clonal hematopoiesis: mutationspecific adaptation to environmental change. Cell Stem Cell 2022;29(6):882–904. DOI: 10.1016/j.stem.2022.05.006
86. Joo L., Bradley C.C., Lin S.H. et al. Causes of clonal hematopoiesis : a review. Curr Oncol Rep 2023;25(3):211–20. DOI: 10.1007/s1191202301362z
87. Weber S., Parmon A., Kurrle N. et al. The clinical significance of iron overload and iron metabolism in myelodysplastic syndrome and acute myeloid leukemia. Front Immunol 2021;11:627662. DOI: 10.3389/fimmu.2020.627662
88. Jasra S., Giricz O., ZeigOwens R. et al. High burden of clonal hematopoiesis in first responders exposed to the World Trade Center disaster. Nat Med 2022;28(3):468–71. DOI: 10.1038/s41591022017083
89. Yoshida K., French B., Yoshida N. et al. Radiation exposure and longitudinal changes in peripheral monocytes over 50 years: the Adult Health Study of atomicbomb survivors. Br J Haematol 2019;185(1):107–15. DOI: 10.1111/bjh.15750
90. Midic D., Rinke J., Perneret F. et al. Prevalence and dynamics of clonal hematopoiesis caused by leukemiaassociated mutations in elderly individuals without hematologic disorders. Leukemia 2020;34:2198–205. DOI: 10.1038/s413750200869y
91. Brojakowska A., Kour A., Thel M.C. et al. Retrospective analysis of somatic mutations and clonal hematopoiesis in astronauts [published correction appears in Commun Biol 2022;5(1):1078]. Commun Biol 2022;5(1):828. DOI: 10.1038/s4200302203777z
92. MenciaTrinchant N., MacKay M.J., Chin C. et al. Clonal hematopoiesis before, during, and after human spaceflight. Cell Rep 2020;33(10):108458. DOI: 10.1016/j.celrep.2020.108458
93. Valent P. ICUS, IDUS, CHIP and CCUS: diagnostic criteria, separation from MDS and clinical implications. Pathobiology 2019;86(1):30–8. DOI: 10.1159/000489042
94. Khoury J.D., Solary E., Abla O. et al. The 5<sup>th</sup> edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022;36(7):1703–19. DOI: 10.1038/s41375022016131
95. Steensma D.P., Ebert B.L. Clonal hematopoiesis as a model for premalignant changes during aging. Exp Hematol 2020;83:48–56. DOI: 10.1016/j.exphem.2019.12.001
96. Gurnari C., Fabiani E., Falconi G. et al. From clonal hematopoiesis to therapyrelated myeloid neoplasms: the silent way of cancer progression. Biology (Basel) 2021;10(2):128. DOI: 10.3390/biology10020128
97. Arber D.A., Orazi A., Hasserjian R.P. et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood 2022;140(11):1200–28. DOI: 10.1182/blood.2022015850
98. Bernstein N., Spencer Chapman M., Nyamondo K. et al. Analysis of somatic mutations in whole blood from 200,618 individuals identifies pervasive positive selection and novel drivers of clonal hematopoiesis. Nat Genet 2024;56(6):1147–55. DOI: 10.1038/s41588024017551
99. Demajo S., RamisZaldivar J.E., Muiños F. et al. Identification of clonal hematopoiesis driver mutations through in silico saturation mutagenesis. Cancer Discov 2024;14(9):1717–31. DOI: 10.1158/21598290.CD231416
100. Ashburner M., Ball C.A., Blake J.A. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000;25(1):25–9. DOI: 10.1038/75556
101. Gene Ontology Consortium. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res 2021;49(D1):D325–34. DOI: 10.1093/nar/gkaa1113
102. Kanehisa M., Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci 2020;29(1):28–35. DOI: 10.1002/pro.3711
103. Kanehisa M., Sato Y., Kawashima M. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci 2022;31(1):47–53. DOI: 10.1002/pro.4172
104. Fabregat A., Sidiropoulos K., Viteri G. et al. Reactome diagram viewer: data structures and strategies to boost performance. Bioinformatics 2018;34(7):1208–14. DOI: 10.1093/bioinformatics/btx752
105. Kelder T., Pico A.R., Hanspers K. et al. Mining biological pathways using WikiPathways web services. PLoS One 2009;4(7):e6447. DOI: 10.1371/journal.pone.0006447
106. Agrawal A., Balcı H., Hanspers K. et al. WikiPathways 2024: next generation pathway database. Nucleic Acids Res 2024;52(D1):D679–89. DOI: 10.1093/nar/gkad960
107. Valent P., Orazi A., Steensma D.P. et al. Proposed minimal diagnostic criteria for myelodysplastic syndromes (MDS) and potential preMDS conditions. Oncotarget 2017;8(43):73483–500. DOI: 10.18632/oncotarget.19008
108. Döhner H., Wei A.H., Appelbaum F.R. et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022;140(12):1345–77. DOI: 10.1182/blood.2022016867
109. Malcovati L., Gallì A., Travaglino E. et al. Clinical significance of somatic mutation in unexplained blood cytopenia. Blood 2017;129:3371–8. DOI: 10.1182/blood201701763425
110. GarciaManero G. Myelodysplastic syndromes: 2023 update on diagnosis, riskstratification, and management. Am J Hematol 2023;98(8):1307–25. DOI: 10.1002/ajh.26984
111. Niroula A., Sekar A., Murakami M.A. et al. Distinction of lymphoid and myeloid clonal hematopoiesis. Nat Med 2021;27(11):1921–7. DOI: 10.1038/s41591021015214
112. Dawoud A.A.Z., Gilbert R.D., Tapper W.J., Cross N.C.P. Clonal myelopoiesis promotes adverse outcomes in chronic kidney disease. Leukemia 2022;36(2):507–15. DOI: 10.1038/s41375021013823
113. Kim P.G., Niroula A., Shkolnik V. et al. Dnmt3amutated clonal hematopoiesis promotes osteoporosis. J Exp Med 2021;218(12):e20211872. DOI: 10.1084/jem.20211872
114. Smith C.L., Eppig J.T. The mammalian phenotype ontology: enabling robust annotation and comparative analysis. Wiley Interdiscip Rev Syst Biol Med 2009;1(3):390–9. DOI: 10.1002/wsbm.44
115. Baldarelli R.M., Smith C.L., Ringwald M. et al. Mouse Genome Informatics: an integrated knowledgebase system for the laboratory mouse. Genetics 2024;227(1):iyae031. DOI: 10.1093/genetics/iyae031
116. Piñero J., QueraltRosinach N., Bravo À. et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford) 2015;2015:bav028. DOI: 10.1093/database/bav028
117. Valent P., Akin C., Arock M. et al. Proposed terminology and classification of premalignant neoplastic conditions: a consensus proposal. EBioMedicine 2017;26:17–24. DOI: 10.1016/j.ebiom.2017.11.024
118. Valent P., Kern W., Hoermann G. et al. Clonal hematopoiesis with oncogenic potential (CHOP): separation from CHIP and roads to AML. Int J Mol Sci 2019;20(3):789. DOI: 10.3390/ijms20030789
119. Cappelli L.V., Meggendorfer M., Baer C. et al. Indeterminate and oncogenic potential: CHIP vs CHOP mutations in AML with NPM1 alteration. Leukemia 2022;36(2):394–402. DOI: 10.1038/s41375021013681
120. Von Beck K., von Beck T., Ferrell P.B. et al. Lymphoid clonal hematopoiesis: implications for malignancy, immunity, and treatment. Blood Cancer J 2023;13(1):5. DOI: 10.1038/s41408022007738
121. Valent P., Bain B.J., Bennett J.M. et al. Idiopathic cytopenia of undetermined significance (ICUS) and idiopathic dysplasia of uncertain significance (IDUS), and their distinction from low risk MDS. Leuk Res 2012;36:1–5. DOI: 10.1016/j.leukres.2011.08.016
122. Valent P., Horny H.P., Bennett J.M. et al. Definitions and standards in the diagnosis and treatment of the myelodysplastic syndromes: consensus statements and report from a working conference. Leuk Res 2007;31:727–36. DOI: 10.1016/j.leukres.2006.11.009
123. Taborda C.C., Zeidan A.M., Mendez L.M. Clonal cytopenia of undetermined significance: definitions, risk and therapeutic targets. Front Hematol 2024;3: 1419323. DOI: 10.3389/frhem.2024.1419323
124. Kern W., Meggendorfer M., Haferlach C., Haferlach T. Integrated diagnostic approach for suspected myelodysplastic syndrome as a basis for advancement of diagnostic criteria. Blood 2016;128(22):299. DOI: 10.1182/blood.V128.22.299.299
125. Mangaonkar A.A., Patnaik M.M. Clonal hematopoiesis of indeterminate potential and clonal cytopenias of undetermined significance: 2023 update on clinical associations and management recommendations. Am J Hematol 2023;98(6):951–64. DOI: 10.1002/ajh.26915
126. Yizhak K., Aguet F., Kim J. et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science 2019;364(6444):eaaw0726. DOI: 10.1126/science.aaw0726
127. Martincorena I., Fowler J.C., Wabik A. et al. Somatic mutant clones colonize the human esophagus with age. Science 2018;362(6417):911–7. DOI: 10.1126/science.aau3879
128. Keogh M.J., Wei W., Aryaman J. et al. High prevalence of focal and multifocal somatic genetic variants in the human brain. Nat Commun 2018;9(1):4257. DOI: 10.1038/s4146701806331w
129. Desai P., MenciaTrinchant N., Savenkov O. et al. Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat Med 2018;24:1015–23. DOI: 10.1038/s415910180081z
130. Kishtagari A., Khan M.A.W., Li Y. et al. Driver mutation zygosity is a critical factor in predicting clonal hematopoiesis transformation risk. Blood Cancer J 2024;14(1):6. DOI: 10.1038/s41408023009749
131. Kleppe M., Comen E., Wen H.Y. et al. Somatic mutations in leukocytes infiltrating primary breast cancers. NPJ Breast Cancer 2015;1:15005. DOI: 10.1038/npjbcancer.2015.5
132. Coombs C.C., Gillis N.K., Tan X. et al. Identification of clonal hematopoiesis mutations in solid tumor patients undergoing unpaired nextgeneration sequencing assays. Clin Cancer Res 2018;24(23):5918–24. DOI: 10.1158/10780432.ccr181201
133. Ptashkin R.N., Mandelker D.L., Coombs C.C. et al. Prevalence of clonal hematopoiesis mutations in tumoronly clinical genomic profiling of solid tumors [published correction appears in JAMA Oncol 2019;5(1):122]. JAMA Oncol 2018;4(11):1589–93. DOI: 10.1001/jamaoncol.2018.2297
134. Marnell C.S., Bick A., Natarajan P. Clonal hematopoiesis of indeterminate potential (CHIP): linking somatic mutations hematopoiesis, chronic inflammation and cardiovascular disease. J Mol Cell Cardiol 2021;161:98–105. DOI: 10.1016/j.yjmcc.2021.07.004
Рецензия
Для цитирования:
Куневич Е.О., Михалева М.А., Крысюк О.Б., Богданов А.Н., Жернякова А.А., Волошин С.В. Феномен клонального гемопоэза: этиология, классификация и прогностическая роль. Онкогематология. 2025;20(1):28-54. https://doi.org/10.17650/1818-8346-2025-20-1-28-54
For citation:
Kunevich E.O., Mikhaleva M.A., Krysyuk O.B., Bogdanov A.N., Zhernyakova A.A., Voloshin S.V. The phenomenon of clonal hematopoiesis: etiology, classification and its prognostic role. Oncohematology. 2025;20(1):28-54. (In Russ.) https://doi.org/10.17650/1818-8346-2025-20-1-28-54