Метаболический профиль бластных клеток при остром миелоидном лейкозе. Обзор литературы
https://doi.org/10.17650/1818-8346-2024-19-4-173-181
Аннотация
Представлен обзор новых данных о метаболизме и механизмах его регулирования в бластных клетках при остром миелоидном лейкозе. Основное внимание уделено роли активных форм кислорода в регуляции сигнальных путей и метаболических процессов, а также их влиянию на агрессивность острого миелоидного лейкоза и его резистентность к химиотерапевтическим препаратам. Повышенные уровни активных форм кислорода ассоциированы с измененной активностью ферментов и белков, участвующих в клеточной пролиферации и выживании. Также рассмотрены данные о роли железа в формировании злокачественности острого миелоидного лейкоза.
Об авторах
А. В. ХалиулинРоссия
Алмаз Вадимович Халиулин,
443099 Самара, ул. Чапаевская, 89
И. И. Занин
Россия
443099 Самара, ул. Чапаевская, 89
А. В. Лямин
Россия
443099 Самара, ул. Чапаевская, 89
И. Л. Давыдкин
Россия
443099 Самара, ул. Чапаевская, 89
И. А. Селезнева
Россия
443099 Самара, ул. Чапаевская, 89
Список литературы
1. Луговская С.А., Почтарь М.Е. Гематологический атлас. 5е изд., доп. М., Тверь: Триада, 2023. 546 с.
2. Döhner H., Estey E., Grimwade D. et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017;129(4):424–47. DOI: 10.1182/blood201608733196
3. Döhner H., Wei A.H., Appelbaum F.R. et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022;140(12):1345–77. DOI: 10.1182/blood.2022016867
4. Агакишиев М.М., Ковынев И.Б., Поспелова Т.И. и др. Эпидемиология и молекулярная генетика острых лейкозов взрослых в г. Новосибирске и Новосибирской области. Клиническая онкогематология. Фундаментальные исследования и клиническая практика 2017;10(4):519–20.
5. Ахмерзаева З.Х., Паровичникова E.Н., Русинов М.A. и др. Эпидемиологическое исследование острых лейкозов в пяти регионах Российской Федерации. Гематология и трансфузиология 2017;62(1):46–51. DOI: 10.18821/0234573020176214651
6. Семочкин С.В., Толстых Т.Н., Архипова Н.В. и др. Клинико эпидемиологическая характеристика острых миелоидных лейкозов у взрослых по данным муниципальных отделений гематологии Москвы. Терапевтический архив 2015;87(7):26–32. DOI: 10.17116/terarkh201587726321
7. National Cancer Institute. Surveillance, Epidemiology, and End Results Program. Available at: https://seer.cancer.gov/
8. Shallis R.M., Wang R., Davidoff A. et al. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev 2019;36:70–87. DOI: 10.1016/j.blre.2019.04.005
9. Liu H. Emerging agents and regimens for AML. J Hematol Oncol 2021;14(1):49. DOI: 10.1186/s1304502101062w
10. Oliveira M.S., Barbosa M.I.F., De Souza T.B. et al. A novel platinum complex containing a piplartine derivative exhibits enhanced cytotoxicity, causes oxidative stress and triggers apoptotic cell death by ERK/p38 pathway in human acute promyelocytic leukemia HL60 cells. Redox Biol 2019;20:182–94. DOI: 10.1016/j.redox.2018.10.006
11. Gurunathan S., Jeyaraj M., La H. et al. Anisotropic platinum nanoparticleinduced cytotoxicity, apoptosis, inflammatory response, and transcriptomic and molecular pathways in human acute monocytic leukemia cells. Int J Mol Sci 2020;21(2):440. DOI: 10.3390/ijms21020440
12. Germon Z.P., Sillar J.R., Mannan A. et al. Blockade of redox second messengers inhibits JAK/STAT and MEK/ERK signaling sensitizing FLT3mutant acute myeloid leukemia to targeted therapies. 2022. DOI: 10.1101/2022.03.09.483687
13. Prata C., Facchini C., Leoncini E. et al. Sulforaphane modulates AQP8linked redox signalling in leukemia cells. Oxid Med Cell Longev 2018;2018:4125297. DOI: 10.1155/2018/4125297
14. ArévaloFerrin J.J., GarcíaOrtiz J.A., ArévaloOlaya C.M. et al. Plantderived extracts P2Et and AnamuSC affect NO and ROS levels in leukemic cells. Univ Sci 2023;28(2):201–16. DOI: 10.11144/Javeriana.SC282.pdep
15. Романенко Н.А., Кайтанджан Е.И., Кулешова А.В. и др. Инфекционные, геморрагические, тромботические и другие осложнения, ассоциированные с катетеризаций центральной вены у онкогематологических больных. Вестник гематологии 2020;16(3):52–3.
16. Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011;144(5):646–74. DOI: 10.1016/j.cell.2011.02.013
17. Vander Heiden M.G., Cantley L.C., Thompson C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324(5930):1029–33. DOI: 10.1126/science.1160809
18. Macintyre A.N., Gerriets V.A., Nichols A.G. et al. The glucose transporter glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab 2014;20(1):61–72. DOI: 10.1016/j.cmet.2014.05.004
19. Liu T., Kishton R.J., Macintyre A.N. et al. Glucose transporter 1mediated glucose uptake is limiting for Bcell acute lymphoblastic leukemia anabolic metabolism and resistance to apoptosis. Cell Death Dis 2014;5(10):e1470. DOI: 10.1038/cddis.2014.431
20. Chen W.L., Wang J.H., Zhao A.H. et al. A distinct glucose metabolism signature of acute myeloid leukemia with prognostic value [published correction appears in Blood 2014;124(18):2893]. Blood 2014;124(10):1645–54. DOI: 10.1182/blood201402554204
21. Chen W.L., Wang Y.Y., Zhao A.H. et al. Enhanced fructose utilization mediated by SLC2A5 is a unique metabolic feature of acute myeloid leukemia with therapeutic potential. Cancer Cell 2016;30(5):779–91. DOI: 10.1016/j.ccell.2016.09.006
22. Chen Y., Xu Q., Ji D. et al. Inhibition of pentose phosphate pathway suppresses acute myelogenous leukemia. Tumor Biol 2016;37(5):6027–34. DOI: 10.1007/s1327701544285
23. German N.J., Yoon H., Yusuf R.Z. et al. PHD3 loss in cancer enables metabolic reliance on fatty acid oxidation via deactivation of ACC2. Mol Cell 2016;63(6):1006–20. DOI: 10.1016/j.molcel.2016.08.014
24. Ricciardi M.R., Mirabilii S., Allegretti M. et al. Targeting the leukemia cell metabolism by the CPT1a inhibition: functional preclinical effects in leukemias. Blood 2015;126(16):1925–9. DOI: 10.1182/blood201412617498
25. Stuani L., Riols F., Millard P. et al. Stable isotope labeling highlights enhanced fatty acid and lipid metabolism in human acute myeloid leukemia. Int J Mol Sci 2018;19(11):3325. DOI: 10.3390/ijms19113325
26. Boutzen H., Saland E., Larrue C. et al. Isocitrate dehydrogenase 1 mutations prime the alltrans retinoic acid myeloid differentiation pathway in acute myeloid leukemia. J Exp Med 2016;213(4):483–97. DOI: 10.1084/jem.20150736
27. Gunn K., Myllykoski M., Cao J.Z. et al. (R)2hydroxyglutarate inhibits KDM5 histone lysine demethylases to drive transformation in IDHmutant cancers. Cancer Discov 2023;13(6):1478–97. DOI: 10.1158/21598290.CD220825
28. Tcheng M., Roma A., Ahmed N. et al. Very long chain fatty acid metabolism is required in acute myeloid leukemia. Blood 2021;137(25):3518–32. DOI: 10.1182/blood.2020008551
29. Ananieva E.A., Wilkinson A.C. Branchedchain amino acid metabolism in cancer. Curr Opin Clin Nutr Metab Care 2018;21(1):64–70. DOI: 10.1097/MCO.0000000000000430
30. Hattori A., Tsunoda M., Konuma T. et al. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature 2017;545(7655):500–4. DOI: 10.1038/nature22314
31. Raffel S., Falcone M., Kneisel N. et al. BCAT1 restricts αKG levels in AML stem cells leading to IDHmutlike DNA hypermethylation. Nature 2017;551(7680):384–8. DOI: 10.1038/nature24294
32. Mussai F., Egan S., HigginbothamJones J. et al. Arginine dependence of acute myeloid leukemia blast proliferation: a novel therapeutic target. Blood 2015;125(15):2386–96. DOI: 10.1182/blood201409600643
33. Jacque N., Ronchetti A.M., Larrue C. et al. Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL2 inhibition. Blood 2015;126(11):1346–56. DOI: 10.1182/blood201501621870
34. Gregory M.A., Nemkov T., Park H.J. et al. Targeting glutamine metabolism and redox state for leukemia therapy. Clin Cancer Res 2019;25(13):4079–90. DOI: 10.1158/10780432.CCR183223
35. He Y., Li B., Zhang H. et al. Lasparaginase induces in AML U937 cells apoptosis via an AIFmediated mechanism. Front Biosci 2014;19(3):515. DOI: 10.2741/4222
36. Ray P.D., Huang B.W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012;24(5):981–90. DOI: 10.1016/j.cellsig.2012.01.008
37. Spencer J.A., Ferraro F., Roussakis E. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 2014;508(7495):269–73. DOI: 10.1038/nature13034
38. Mantel C.R., O’Leary H.A., Chitteti B.R. et al. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 2015;161(7):1553–65. DOI: 10.1016/j.cell.2015.04.054
39. Robichaux D.J., Harata M., Murphy E., Karch J. Mitochondrial permeability transition pore-dependent necrosis. J Mol Cell Cardiol 2023;174:47–55. DOI: 10.1016/j.yjmcc.2022.11.003
40. Roos G., Messens J. Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic Biol Med 2011;51(2):314–26. DOI: 10.1016/j.freeradbiomed.2011.04.031
41. Taylor J.P., Tse H.M. The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol 2021;48:102159. DOI: 10.1016/j.redox.2021.102159
42. Hole P.S., Zabkiewicz J., Munje C. et al. Overproduction of NOX derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling. Blood 2013;122(19):3322–30. DOI: 10.1182/blood201304491944
43. Bedard K., Krause K.H. The NOX family of ROSgenerating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007;87(1):245–313. DOI: 10.1152/physrev.00044.2005
44. Bienert G.P., Møller A.L., Kristiansen K.A. et al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 2007;282(2):1183–92. DOI: 10.1074/jbc.M603761200
45. Byrne D.P., Shrestha S., Galler M. et al. Aurora A regulation by reversible cysteine oxidation reveals evolutionarily conserved redox control of Ser/Thr protein kinase activity. Sci Signal 2020;13(639):2713. DOI: 10.1126/scisignal.aax2713
46. Heppner D.E., Dustin C.M., Liao C. et al. Direct cysteine sulfenylation drives activation of the Src kinase. Nat Commun 2018;9(1):4522. DOI: 10.1038/s41467018067901
47. Guarino M. Src signaling in cancer invasion. J Cell Physiol 2010;223(1):14–26. DOI: 10.1002/jcp.22011
48. MartínezLimón A., Joaquin M., Caballero M. et al. The p38 pathway: from biology to cancer therapy. Int J Mol Sci 2020;21(6):1913. DOI: 10.3390/ijms21061913
49. Ijurko C., González‐García N., Galindo‐Villardón P., Hernández‐ Hernández Á. A 29‐gene signature associated with NOX2 discriminates acute myeloid leukemia prognosis and survival. Am J Hematol 2022;97(4):448–57. DOI: 10.1002/ajh.26477
50. Paolillo R., Boulanger M., Gâtel P. et al. The NADPH oxidase NOX2 is a marker of adverse prognosis involved in chemoresistance of acute myeloid leukemias. Haematologica 2022;107(11):2562–75. DOI: 10.3324/haematol.2021.279889
51. Papaemmanuil E., Gerstung M., Bullinger L. et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016;374(23):2209–21. DOI: 10.1056/NEJMoa1516192
52. Böhmer A., Barz S., Schwab K. et al. Modulation of FLT3 signal transduction through cytoplasmic cysteine residues indicates the potential for redox regulation. Redox Biol 2020;28:101325. DOI: 10.1016/j.redox.2019.101325
53. Robinson A.J., Hopkins G.L., Rastogi N. et al. Reactive oxygen species drive proliferation in acute myeloid leukemia via the glycolytic regulator PFKFB3. Cancer Res 2020;80(5):937–49. DOI: 10.1158/00085472.CAN191920
54. Luby A., AlvesGuerra M.C. UCP2 as a cancer target through energy metabolism and oxidative stress control. Int J Mol Sci 2022;23(23):15077. DOI: 10.3390/ijms232315077
55. Doménech E., Maestre C., EstebanMartínez L. et al. AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest. Nat Cell Biol 2015;17(10):1304–16. DOI: 10.1038/ncb3231
56. Ijurko C., RomoGonzález M., GarcíaCalvo C. et al. NOX2 control over energy metabolism plays a role in acute myeloid leukaemia prognosis and survival. Free Radic Biol Med 2023;209:18–28. DOI: 10.1016/j.freeradbiomed.2023.10.013
57. Robinson A.J., Davies S., Darley R.L., Tonks A. Reactive oxygen species rewires metabolic activity in acute myeloid leukemia. Front Oncol 2021;11:632623. DOI: 10.3389/fonc.2021.632623
58. Dixon S.J., Stockwell B.R. The role of iron and reactive oxygen species in cell death. Nat Chem Biol 2014;10(1):9–17. DOI: 10.1038/nchembio.1416
59. Dixon S.J., Lemberg K.M., Lamprecht M.R. et al. Ferroptosis: an irondependent form of nonapoptotic cell death. Cell 2012;149(5):1060–72. DOI: 10.1016/j.cell.2012.03.042
60. Torti S.V., Torti F.M. Iron and cancer: more ore to be mined. Nat Rev Cancer 2013;13(5):342–55. DOI: 10.1038/nrc3495
61. Gomes I.M., Maia C.J., Santos C.R. STEAP proteins: from structure to applications in cancer therapy. Mol Cancer Res 2012;10(5):573–87. DOI: 10.1158/15417786.MCR110281
62. Rocha S.M., Socorro S., Passarinha L.A., Maia C.J. Comprehensive landscape of STEAP family members expression in human cancers: unraveling the potential usefulness in clinical practice using integrated bioinformatics analysis. Data 2022;7(5):64. DOI: 10.3390/data7050064
63. Pantopoulos K. Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 2004;1012(1):1–13. DOI: 10.1196/annals.1306.001
64. Chan L.S.A., Gu L.C., Wells R.A. The effects of secondary iron overload and iron chelation on a radiationinduced acute myeloid leukemia mouse model. BMC Cancer 2021;21(1):509. DOI: 10.1186/s12885021082599
65. Bertoli S., Paubelle E., Bérard E. et al. Ferritin heavy/light chain (FTH1/FTL) expression, serum ferritin levels, and their functional as well as prognostic roles in acute myeloid leukemia. Eur J Haematol 2019;102(2):131–42. DOI: 10.1111/ejh.13183
66. Gasparetto M., Pei S., Minhajuddin M. et al. Low ferroportin expression in AML is correlated with good risk cytogenetics, improved outcomes and increased sensitivity to chemotherapy. Leuk Res 2019;80:1–10. DOI: 10.1016/j.leukres.2019.02.011
67. Pitts H.A., Cheng C.K., Cheung J.S. et al. SPINK2 protein expression is an independent adverse prognostic marker in AML and is potentially implicated in the regulation of ferroptosis and immune response. Int J Mol Sci 2023;24(11):9696. DOI: 10.3390/ijms24119696
68. Argenziano M., Tortora C., Paola A.D. et al. Eltrombopag and its iron chelating properties in pediatric acute myeloid leukemia. Oncotarget 2021;12(14):1377–87. DOI: 10.18632/oncotarget.28000
Рецензия
Для цитирования:
Халиулин А.В., Занин И.И., Лямин А.В., Давыдкин И.Л., Селезнева И.А. Метаболический профиль бластных клеток при остром миелоидном лейкозе. Обзор литературы. Онкогематология. 2024;19(4):173-181. https://doi.org/10.17650/1818-8346-2024-19-4-173-181
For citation:
Khaliulin A.V., Zanin I.I., Lyamin A.V., Davydkin I.L., Selezneva I.A. Metabolic profile of blast cells in acute myeloid leukemia. Literature review. Oncohematology. 2024;19(4):173-181. (In Russ.) https://doi.org/10.17650/1818-8346-2024-19-4-173-181