Preview

Oncohematology

Advanced search

Results of various somatic mutations detection in patients with chronic myeloid leukemia

https://doi.org/10.17650/1818-8346-2024-19-4-150-163

Abstract

Background. Somatic mutations in chronic myeloid leukemia (CML) patients are considered as possible factors for the failure of tyrosine kinase inhibitor (TKI) therapy, and the study of their characteristics is of interest.

Aim. To evaluate the genetic profile of blood cells in CML patients using nextgeneration sequencing.

Materials and methods. Retrospective study was conducted in two groups of patients: group 1 with TKI therapy failure (n = 29) and group 2 with optimal response to TKI therapy (n = 29). The target panel for nextgeneration sequencing included 19 genes: ASXL1, DNMT3A, FLT3, IDH1, IDH2, NPM1, RUNX1, SF3B1, SRSF2, TET2, TP53, U2AF2, KIT, WT1, CEBPA, ZRSR2, JAK2, GATA2, ABL1. In order to assess clonal evolution, additional samples were examined at a retrospective point in time closest to the primary CML diagnosis.

Results. In group 1, mutations in 8 genes (including ABL1) were identified in 19/29 (66 %) patients. Excluding ABL1, mutations were identified in 15 (52 %) patients. In 9 (31 %) patients, >1 mutation (2 to 4) was detected. Frequency of genes mutations in group 1: ABL1 in 11 (38 %) patients, ASXL1 in 9 (31 %) patients, DNMT3A in 3 (10 %) patients, RUNX1, CEBPA in 2 patients (7 %), WT1, NPM1, TET2 in 1 patient (3.5 %). In 7 (24 %) patients there was a combination of mutations in ABL1 gene and in another gene; the most frequent combination of mutations in genes: ABL1 + ASXL1 – in 4 patients (14 %). The dynamics of mutant clones in group 1 was evaluated in 21/29 (72 %) patients. In 10/21 (48 %) patients somatic mutations in genes appeared during CML treatment, in 14/21 (67 %) patients previously detected mutations persisted, in 1 (5 %) the mutation disappeared. In group 2, somatic mutations were detected in 2/29 (7 %) patients: in DNMT3A (ariant Allele Frequency (AF) 5 %) and TP53 (AF 9 %) genes – these mutations were not detected at the diagnosis of CML. In one patient ASXL1 mutation (AF 5 %) was detected only at diagnosis, and was not detected subsequently with optimal response to therapy.

Conclusion. The presence of somatic gene mutations is associated with a resistant CML course: somatic mutations in genes other than ABL1 were more common in CML patients with TKI therapy failure than in those with optimal response: 52 % vs. 7 % (p ≤0.05). Mutations in ASXL1 (31 %) and DNMT3A (10 %) were the most frequently detected. The frequency of ABL1 and ASXL1 mutations combination amounted to 14 %. uring followup, somatic mutations predominantly persisted or appeared over time in CML patients with TKI therapy resistance.

About the Authors

E. A. Kuzmina
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

Elena Andreevna Kuzmina,

4 Novyy Zykovskiy Proezd, Moscow 125167



E. Yu. Chelysheva
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

4 Novyy Zykovskiy Proezd, Moscow 125167



B. V. Biderman
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

4 Novyy Zykovskiy Proezd, Moscow 125167



O. A. Shukhov
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

4 Novyy Zykovskiy Proezd, Moscow 125167



E. A. Stepanova
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

4 Novyy Zykovskiy Proezd, Moscow 125167



E. P. Gadzhieva
Research Centre for Medical Genetics
Russian Federation

1 Moskvorech’e St., Moscow 115522



A. N. Petrova
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

4 Novyy Zykovskiy Proezd, Moscow 125167



I. S. Nemchenko
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

4 Novyy Zykovskiy Proezd, Moscow 125167



A. V. Bykova
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

4 Novyy Zykovskiy Proezd, Moscow 125167



M. A. Guryanova
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

4 Novyy Zykovskiy Proezd, Moscow 125167



A. V. Kokhno
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

4 Novyy Zykovskiy Proezd, Moscow 125167



A. G. Turkina
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

4 Novyy Zykovskiy Proezd, Moscow 125167



A. B. Sudarikov
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

4 Novyy Zykovskiy Proezd, Moscow 125167



References

1. Ren R. Mechanisms of BCRABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 2005;5(3):172–83. DOI: 10.1038/nrc1567

2. Quintá SCardama A., Cortes J. Molecular biology of bcrabl1 positive chronic myeloid leukemia. Blood 2009;113(8):1619–30. DOI: 10.1182/blood200803144790

3. Hoffmann V.S., Baccarani M., Hasford J. et al. The EUTOS population-based registry: incidence and clinical characteristics of 2904 CML patients in 20 European Countries. Leukemia 2015;29(6):1336–43. DOI: 10.1038/leu.2015.73

4. Hehlmann R. Chronic myeloid leukemia in 2020. Hemasphere 2020;4(5):E468. DOI: 10.1097/HS9.0000000000000468

5. Aleksandrova T.N., Mulina I.I., Lyamkina A.S. et al. Cytokine profile in patients with chronic myeloid leukemia. Meditsinskaya immunologiya = Medical Immunology 2024;26(2):329–36. (In Russ.). DOI: 10.15789/15630625CPO2851

6. Kustova D., Kirienko A., Motyko E. et al. P660: Nextgeneration sequencing (NGS) for detecting BCR::ABLindependent mutations in patients with chronic myeloid leukemia with resistance to tyrosine kinase inhibitor treatment. Hemasphere 2023;7(S3):e8616465. DOI: 10.1097/01.HS9.0000969544.86164.65

7. Hochhaus A., Baccarani M., Silver R.T. et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia 2020;34(4):966–84. DOI: 10.1038/s4137502007762

8. Kutsev S.I., Velchenko M.V. Significance of analysis of BCR-ABL gene mutations in optimization of target therapy for chronic myeloid leukemia. Klinicheskaya onkogematologiya = Clinical Oncohematology 2008;1(3):190–9. (In Russ.).

9. Branford S., Rudzki Z., Walsh S. et al. Detection of BCRABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (Ploop) are associated with a poor prognosis. Blood 2003;102(1):276–83. DOI: 10.1182/blood2002092896

10. Chelysheva E.Yu., Shukhov O.A., Lazareva O.V. et al. BCR-ABL kinase domain mutations in chronic myeloid leukemia. Klinicheskaya onkogematologiya = Clinical Oncohematology 2012;5(1):13–21. (In Russ.)

11. Cortes J.E., Talpaz M., Giles F. et al. Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy. Blood 2003;101(10):3794–800. DOI: 10.1182/blood2002092790

12. Vinogradova O.Yu., Aseeva E.A., Vorontsova A.V. et al. Influence of different chromosomal abnormalities in Phpositive bone marrow cells on the chronic myeloid leukemia course during tyrosine kinase inhibitors therapy. Onkogematologiya = Oncohematology 2012;7(4): 24–34. (In Russ.). DOI: 10.17650/181883462012742434

13. Branford S., Dong D., Kim H. et al. Laying the foundation for genomically-based risk assessment in chronic myeloid leukemia behalf of the International CML Foundation Genomics Alliance. Leukemia 2019;33:1835–50. DOI: 10.1038/s413750190512y

14. Sant’Antonio E., Camerini C., Rizzo V. et al. Genetic heterogeneity in chronic myeloid leukemia: how clonal hematopoiesis and clonal evolution may influence prognosis, treatment outcome, and risk of cardiovascular events. Clin Lymphoma Myeloma Leuk 2021;21(9):573–9. DOI: 10.1016/j.clml.2021.04.014

15. Branford S., Fernandes A., Shahrin N.H. et al. Beyond BCR::ABL1 the role of genomic analyses in the management of CML. J Natl Compr Canc Netw 2024;22(1):e237335. DOI: 10.6004/jnccn.2023.7335

16. Shanmuganathan N., Yeung D.T., Wadham C. et al. Additional mutational events at diagnosis of CML confer inferior failurefree survival and molecular response for patients treated with frontline imatinib but not for patients treated with frontline secondgeneration tyrosine kinase inhibitors. Blood 2022;140(Suppl 1):805–6. DOI: 10.1182/blood2022158743

17. Grossmann V., Kohlmann A., Zenger M. et al. A deep-sequencing study of chronic myeloid leukemia patients in blast crisis (BCCML) detects mutations in 76.9 % of cases. Leukemia 2011;25(3):557–60. DOI: 10.1038/leu.2010.298

18. Branford S., Wang P., Yeung D.T. et al. Integrative genomic analysis reveals cancer-associated mutations at diagnosis of CML in patients with high-risk disease. Blood 2018;132(9):948–61. DOI: 10.1182/blood201802832253

19. Awad S.A., Kankainen M., Ojala T. et al. Mutation accumulation in cancer genes relates to nonoptimal outcome in chronic myeloid leukemia. Blood Adv 2020;4(3):546. DOI: 10.1182/bloodadvances.2019000943

20. Mullighan C.G., Miller C.B., Radtke I. et al. BCRABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008;453(7191):110–4. DOI: 10.1038/nature06866

21. Ochi Y., Yoshida K., Huang Y.J. et al. Clonal evolution and clinical implications of genetic abnormalities in blastic transformation of chronic myeloid leukaemia. Nat Commun 2021;12(1):2833. DOI: 10.1038/s4146702123097w

22. Mitani K., Nagata Y., Sasaki K. et al. Somatic mosaicism in chronic myeloid leukemia in remission. Blood 2016;128(24):2863–6. DOI: 10.1182/blood201606723494

23. Schmidt M., Rinke J., Schäfer V. et al. Molecular-defined clonal evolution in patients with chronic myeloid leukemia independent of the BCRABL status. Leukemia 2014;28(12):2292–9. DOI: 10.1038/leu.2014.272

24. Kim T.H., Tyndel M.S., Kim H.J. et al. Spectrum of somatic mutation dynamics in chronic myeloid leukemia following tyrosine kinase inhibitor therapy. Blood 2017;129(1):38–47. DOI: 10.1182/blood201604708560

25. Shukhov O.A., Turkina A.G., Chelysheva E.Yu. et al. Treatment of chronic myeloid leukemia according to current guidelines: the results of the pilot prospective study “Early Induction Therapy and Monitoring” (РИТМ). Klinicheskaya onkogematologiya = Clinical Oncohematology 2019;12(2):194–201. (In Russ.). DOI: 10.21320/250021392019122194201

26. Turkina A.G., Kuzmina E.A., Lomaia E.G. et al. Asciminib in chronic myeloid leukemia patients without therapeutic alternatives alternatives: results of the MAP (Managed Access Program, NCT04360005) trial in Russia. Klinicheskaya onkogematologiya = Clinical Oncohematology 2023;16(1):54–68. (In Russ.). DOI: 10.21320/2500213920231615468

27. Barton D.E. DNA prep for eukaryotic cells (macrophages)? Available at: http://www.bio.net/bionet/mm/method-sand-reagents/1995July/031231.html

28. Adilgereeva E.P., Nikitin A.G., Zheglo D.G. et al. Molecular genetic predictors of chronic myeloid leukemia primary resistance to tyrosine kinase inhibitors therapy. Vestnik gematologii = Bulletin of Hematology 2021;17(2):45–46. (In Russ.).

29. RocheLestienne C., Marceau A., Labis E. et al. Mutation analysis of TET2, IDH1, IDH2 and ASXL1 in chronic myeloid leukemia. Leukemia 2011;25(10):1661–4. DOI: 10.1038/leu.2011.139

30. Ernst T., Busch M., Rinke J. et al. Frequent ASXL1 mutations in children and young adults with chronic myeloid leukemia. Leukemia 2018;32(9):2046–9. DOI: 10.1038/s4137501801572

31. Schönfeld L., Rinke J., Hinze A. et al. ASXL1 mutations predict inferior molecular response to nilotinib treatment in chronic myeloid leukemia. Leukemia 2022;36(9):2242. DOI: 10.1038/s41375022016484

32. Melikyan A.L., Subortseva I.N. Biology of myeloproliferative malignancies. Klinicheskaya onkogematologiya = Clinical Oncohematology 2016;9(3):314–25. (In Russ.). DOI: 10.21320/25002139201693314325

33. Branford S., Hochhaus A., Mauro M. et al. Impact of mutations in blood cancer-related genes on clinical outcomes in chronic myeloid leukemia in chronic phase (CMLCP) after ≥2 tyrosine kinase inhibitors (TKIs) in the ascembl trial. Blood 2023;142(Suppl 1): 449. DOI: 10.1182/blood2023187636

34. Cross N.C.P., Ernst T., Branford S. et al. European LeukemiaNet laboratory recommendations for the diagnosis and management of chronic myeloid leukemia. Leukemia 2023;37:2150. DOI: 10.1038/s4137502302048y

35. RoeheLestienne C., Deluche L., Corm S. et al. RUNX1 DNAbinding mutations and RUNX1PRDM16 cryptic fusions in BCRABL + leukemias are frequently associated with secondary trisomy 21 and may contribute to clonal evolution and imatinib resistance. Blood 2008;111(7):3735–41. DOI: 10.1182/blood200707102533

36. Döhner H., Estey E., Grimwade D. et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017;129(4):424. DOI: 10.1182/blood201608733196

37. Smirnikhina S.A., Chelysheva E.Yu., Lavrov A.V. et al. Prognostic genetic markers of relapses in patients with chronic myeloid leukemia after withdrawal of tyrosine kinase inhibitors. Klinicheskaya onkogematologiya = Clinical Oncohematology 2017;10(4):580–1.


Review

For citations:


Kuzmina E.A., Chelysheva E.Yu., Biderman B.V., Shukhov O.A., Stepanova E.A., Gadzhieva E.P., Petrova A.N., Nemchenko I.S., Bykova A.V., Guryanova M.A., Kokhno A.V., Turkina A.G., Sudarikov A.B. Results of various somatic mutations detection in patients with chronic myeloid leukemia. Oncohematology. 2024;19(4):150-163. (In Russ.) https://doi.org/10.17650/1818-8346-2024-19-4-150-163

Views: 140


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)