Preview

Онкогематология

Расширенный поиск

CAR-T: от идеи до применения

https://doi.org/10.17650/1818-8346-2024-19-3-185-198

Аннотация

В современной иммунотерапии перспективным направлением является терапия с помощью Т-лимфоцитов с химерным антигенным рецептором (CAR-T). Среди злокачественных гематологических заболеваний даже при продвинутых стадиях и резистентных/рецидивирующих формах применение CAR-T демонстрирует высокую эффективность. Наблюдаемый клинический успех у пациентов с гемобластозами не только обусловливает постоянно увеличивающийся список показаний к применению CAR-T в этой группе больных, но и мотивирует исследовать данный метод лечения в солидной онкологии и при аутоиммунных заболеваниях. В настоящем обзоре рассматриваются история появления и развития CAR-T, путь от идеи создания до регистрации к клиническому применению.

Об авторах

М. О. Попова
НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России
Россия

Марина Олеговна Попова 

197022 Санкт-Петербург, ул. Льва Толстого, 6–8



В. В. Маркелов
НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России
Россия

197022 Санкт-Петербург, ул. Льва Толстого, 6–8



Список литературы

1. Павлова А.А., Масчан М.А., Пономарев В.Б. Адоптивная иммунотерапия генетически модифицированными Т-лимфоцитами, экспрессирующими химерные антигенные рецепторы. Онкогематология 2017;12(1):17–32. DOI: 10.17650/1818-8346-2017-12-1-17-32

2. Razi S., Rezaei N. Introduction on cancer immunotherapy. In: Handbook of cancer and immunology. Ed. N. Rezaei. Springer, Cham, 2023. Available at: https://doi.org/10.1007/978-3-030-80962-1_180-1

3. Coley W.B. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res 1991;(262):3–11.

4. Coley W.B. The Treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med 1910;3 (Surg Sect):1–48.

5. Pearl R. On the pathological relations between cancer and tuberculosis. Proc Soc Exp Biol Med 1928;26:73–5. DOI: 10.3181/00379727-26-4143

6. Billingham R.E., Brent L., Medawar P.B. Quantitative studies on tissue transplantation immunity. II. The origin, strength and duration of actively and adoptively acquired immunity. Proc R Soc Lond B Biol Sci 1954;143(910):58–80. DOI: 10.1098/rspb.1954.00

7. Mitchison N.A. Passive transfer of transplantation immunity. Nature 1953;171(4345):267–8. DOI: 10.1038/171267b0

8. Gorer P.A. The genetic and antigenic basis of tumour transplantation. J Pathol Bacteriol 1937;44:691–7.

9. Snell G.D. Some recollections of Peter Gorer and his work on this fiftieth anniversary of his discovery of H-2. Immunogenetics 1986;24(6):339–40. DOI: 10.1007/BF00377948

10. Dausset J. Iso-leuco-anticorps [Iso-leuko-antibodies]. Acta Haematol 1958;20(1–4):156–66. DOI: 10.1159/000205478

11. Edelman G.M. Dissociation of γ-globulin. J Am Chem Soc 1959;81:3155–6.

12. Porter R.R. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J 1959;73(1):119–26. DOI: 10.1042/bj0730119

13. Miller J.F. Immunological function of the thymus. Lancet 1961;2(7205):748–9. DOI: 10.1016/s0140-6736(61)90693-6

14. Cooper M.D., Peterson R.D., Good R.A. Delineation of the thymic and bursal lymphoid systems in the chicken. Nature 1965;205: 143–6. DOI: 10.1038/205143a0

15. Thomas E.D., Lochte H.J., Lu W.C., Ferrebee J.W. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 1957;257(11):491–6. DOI: 10.1056/NEJM195709122571102

16. Appelbaum F.R. Hematopoietic-cell transplantation at 50. N Engl J Med 2007;357(15):1472–5. DOI: 10.1056/NEJMp078166

17. The Nobel Prize in Physiology or Medicine 1990. Available at: https://www.nobelprize.org/prizes/medicine/1990/summary/

18. Mathe G., Amiel J.L., Schwarzenberg L. et al. Haematopoietic chimera in man after allogenic (homologous) bone-marrow transplantation (control of the secondary syndrome. specific tolerance due to the chimerism). Br Med J 1963;2(5373):1633–5. DOI: 10.1136/bmj.2.5373.1633

19. Zinkernagel R.M., Doherty P.C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 1974;248(5450):701–2. DOI: 10.1038/248701a0

20. Shimonkevitz R., Kappler J., Marrack P., Grey H. Antigen recognition by H-2-restricted T cells. I. Cell-free antigen processing. J Exp Med 1983;158(2):303–16. DOI: 10.1084/jem.158.2.303

21. Townsend A.R., Gotch F.M., Davey J. Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell 1985;42(2):457–67. DOI: 10.1016/0092-8674(85)90103-5

22. Reinherz E.L., Meuer S.C., Schlossman S.F. The human T cell receptor: analysis with cytotoxic T cell clones. Immunol Rev 1983;74:83–112. DOI: 10.1111/j.1600-065x.1983.tb01085.x

23. Morgan D.A., Ruscetti F.W., Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 1976;193(4257):1007–8. DOI: 10.1126/science.181845

24. Gillis S., Smith K.A. Long term culture of tumour-specific cytotoxic T cells. Nature 1977;268(5616):154–6. DOI: 10.1038/268154a0

25. Yron I., Wood T.A.J., Spiess P.J., Rosenberg S.A. In vitro growth of murine T cells. V. The isolation and growth of lymphoid cells infiltrating syngeneic solid tumors. J Immunol 1980;125(1):238–45.

26. Lotze M.T., Grimm E.A., Mazumder A. et al. Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Res 1981;41(11 Pt 1):4420–5.

27. Grimm E.A., Mazumder A., Zhang H.Z., Rosenberg S.A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med 1982;155(6):1823–41. DOI: 10.1084/jem.155.6.1823

28. Mulé J.J., Shu S., Schwarz S.L., Rosenberg S.A. Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science 1984;225(4669):1487–9. DOI: 10.1126/science.6332379

29. Mulé J.J., Shu S., Rosenberg S.A. The anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo. J Immunol 1985;135(1):646–52.

30. Lafreniere R., Rosenberg S.A. Successful immunotherapy of murine experimental hepatic metastases with lymphokine-activated killer cells and recombinant interleukin 2. Cancer Res 1985;45(8):3735–41.

31. Rosenberg S.A., Mulé J.J., Spiess P.J. et al. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med 1985;161(5):1169–88. DOI: 10.1084/jem.161.5.1169

32. Rosenberg S.A., Terry W.D. Passive immunotherapy of cancer in animals and man. Adv Cancer Res 1977;25:323–88. DOI: 10.1016/s0065-230x(08)60637-5

33. Rosenberg S.A., Spiess P., Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 1986;233(4770):1318–21. DOI: 10.1126/science.3489291

34. Fefer A. Immunotherapy and chemotherapy of Moloney sarcoma virus-induced tumors in mice. Cancer Res 1969;29(12):2177–83.

35. Glynn J.P., Halpern B.L., Fefer A. An immunochemotherapeutic system for the treatment of a transplanted Moloney virus-induced lymphoma in mice. Cancer Res 1969;29(3):515–20.

36. Rosenberg S.A., Lotze M.T., Muul L.M. et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985;313(23):1485–92. DOI: 10.1056/NEJM198512053132327

37. Rosenberg S.A., Packard B.S., Aebersold P.M. et al. Use of tumorinfiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 1988;319(25):1676–80. DOI: 10.1056/NEJM198812223192527

38. Topalian S.L., Solomon D., Avis F.P. et al. Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant interleukin-2: a pilot study. J Clin Oncol 1988;6(5):839–53. DOI: 10.1200/JCO.1988.6.5.839

39. Weiden P.L., Flournoy N., Thomas E.D. et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneicmarrow grafts. N Engl J Med 1979;300(19):1068–73. DOI: 10.1056/NEJM197905103001902

40. Kolb H.J., Mittermüller J., Clemm C. et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990;76(12):2462–5.

41. Kuwana Y., Asakura Y., Utsunomiya N. et al. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem Biophys Res Commun 1987;149(3):960–8. DOI: 10.1016/0006-291x(87)90502-x

42. Gross G., Waks T., Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibodytype specificity. Proc Natl Acad Sci USA 1989;86(24):10024–8. DOI: 10.1073/pnas.86.24.10024

43. Weissman A.M., Baniyash M., Hou D. et al. Molecular cloning of the zeta chain of the T cell antigen receptor. Science 1988;239(4843):1018–21. DOI: 10.1126/science.3278377

44. Romeo C., Seed B. Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell 1991;64(5):1037–46. DOI: 10.1016/0092-8674(91)90327-u

45. Irving B.A., Weiss A. The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 1991;64(5):891–901. DOI: 10.1016/0092-8674(91)90314-o

46. Letourneur F., Klausner R.D. T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor zeta family proteins. Proc Natl Acad Sci USA 1991;88(20):8905–9. DOI: 10.1073/pnas.88.20.8905

47. Romeo C., Amiot M., Seed B. Sequence requirements for induction of cytolysis by the T cell antigen/Fc receptor zeta chain. Cell 1992;68(5):889–97. DOI: 10.1016/0092-8674(92)90032-8

48. Huston J.S., Levinson D., Mudgett-Hunter M. et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci USA 1988;85(16):5879–83. DOI: 10.1073/pnas.85.16.5879

49. Bird R.E., Hardman K.D., Jacobson J.W. et al. Singlechain antigen-binding proteins [published correction appears in Science 1989 Apr 28;244(4903):409]. Science 1988;242(4877):423–6. DOI: 10.1126/science.3140379

50. Eshhar Z., Waks T., Gross G., Schindler D.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 1993;90(2):720–4. DOI: 10.1073/pnas.90.2.720

51. Stancovski I., Schindler D.G., Waks T. et al. Targeting of T lymphocytes to Neu/HER2-expressing cells using chimeric single chain Fv receptors. J Immunol 1993;151(11):6577–82.

52. Brocker T., Peter A., Traunecker A., Karjalainen K. New simplified molecular design for functional T cell receptor. Eur J Immunol 1993;23(7):1435–9. DOI: 10.1002/eji.1830230705

53. Moritz D., Wels W., Mattern J., Groner B. Cytotoxic T lymphocytes with a grafted recognition specificity for ERBB2-expressing tumor cells. Proc Natl Acad Sci USA 1994;91(10):4318–22. DOI: 10.1073/pnas.91.10.4318

54. Hwu P., Yang J.C., Cowherd R. et al. In vivo antitumor activity of T cells redirected with chimeric antibody/T-cell receptor genes. Cancer Res 1995;55(15):3369–73.

55. Weijtens M.E., Willemsen R.A., Valerio D. et al. Single chain Ig/ gamma gene-redirected human T lymphocytes produce cytokines, specifically lyse tumor cells, and recycle lytic capacity. J Immunol 1996;157(2):836–43.

56. Gong M.C., Latouche J.B., Krause A. et al. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia 1999;1(2):123–7. DOI: 10.1038/sj.neo.7900018

57. Haynes N.M., Snook M.B., Trapani J.A. et al. Redirecting mouse CTL against colon carcinoma: superior signaling efficacy of singlechain variable domain chimeras containing TCR-zeta vs Fc epsilon RI-gamma. J Immunol 2001;166(1):182–7. DOI: 10.4049/jimmunol.166.1.182

58. Dudley M.E., Wunderlich J.R., Robbins P.F. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002;298(5594):850–4. DOI: 10.1126/science.1076514

59. Kershaw M.H., Westwood J.A., Parker L.L. et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006;12(20 Pt 1):6106–15. DOI: 10.1158/1078-0432.CCR-06-1183

60. Lamers C.H., Sleijfer S., Vulto A.G. et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 2006;24(13):e20–2. DOI: 10.1200/JCO.2006.05.9964

61. Park J.R., Digiusto D.L., Slovak M. et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther 2007;15(4):825–33. DOI: 10.1038/sj.mt.6300104

62. Till B.G., Jensen M.C., Wang J. et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 2008;112(6):2261–71. DOI: 10.1182/blood-2007-12-128843

63. Morgan R.A., Dudley M.E., Wunderlich J.R. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006;314(5796):126–9. DOI: 10.1126/science.1129003

64. Lenschow D.J., Walunas T.L., Bluestone J.A. CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996;14:233–58. DOI: 10.1146/annurev.immunol.14.1.233

65. Alvarez-Vallina L., Hawkins R.E. Antigen-specific targeting of CD28-mediated T cell co-stimulation using chimeric singlechain antibody variable fragment-CD28 receptors. Eur J Immunol 1996;26(10):2304–9. DOI: 10.1002/eji.1830261006

66. Finney H.M., Lawson A.D., Bebbington C.R., Weir A.N. Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol 1998;161(6):2791–7.

67. Hombach A., Wieczarkowiecz A., Marquardt T. et al. Tumorspecific T cell activation by recombinant immunoreceptors: CD3 zeta signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3 zeta signaling receptor molecule [published correction appears in J Immunol 2004;173(1):695]. J Immunol 2001;167(11):6123–31. DOI: 10.4049/jimmunol.167.11.6123

68. Maher J., Brentjens R.J., Gunset G. et al. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol 2002;20(1):70–5. DOI: 10.1038/nbt0102-70

69. Finney H.M., Akbar A.N., Lawson A.D. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol 2004;172(1):104–13. DOI: 10.4049/jimmunol.172.1.104

70. Imai C., Mihara K., Andreansky M. et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 2004;18(4):676–84. DOI: 10.1038/sj.leu.2403302

71. Milone M.C., Fish J.D., Carpenito C. et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo [published correction appears in Mol Ther 2015;23(7):1278]. Mol Ther 2009;17(8):1453–64. DOI: 10.1038/mt.2009.83

72. Kochenderfer J.N., Wilson W.H., Janik J.E. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010;116(20):4099–102. DOI: 10.1182/blood-2010-04-281931

73. Brentjens R., Yeh R., Bernal Y. et al. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 2010;18(4):666–8. DOI: 10.1038/mt.2010.31

74. Brentjens R.J., Rivière I., Park J.H. et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011;118(18):4817–28. DOI: 10.1182/blood-2011-04-348540

75. Porter D.L., Levine B.L., Kalos M. et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia [published correction appears in N Engl J Med 2016;374(10):998]. N Engl J Med 2011;365(8):725–33. DOI: 10.1056/NEJMoa1103849

76. Melenhorst J.J., Chen G.M., Wang M. et al. Decade-long leukaemia remissions with persistence of CD4+CAR T cells [published correction appears in Nature 2022;612(7941):E22]. Nature 2022;602(7897):503–9. DOI: 10.1038/s41586-021-04390-6

77. Grupp S.A., Kalos M., Barrett D. et al. Chimeric antigen receptormodified T cells for acute lymphoid leukemia [published correction appears in N Engl J Med 2016;374(10):998]. N Engl J Med 2013;368(16):1509–18. DOI: 10.1056/NEJMoa1215134

78. Emily is alive today because of cancer research. Available at: https://emilywhiteheadfoundation.org/our-journey/

79. Maude S.L., Frey N., Shaw P.A. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia [published correction appears in N Engl J Med 2016;374(10):998]. N Engl J Med 2014;371(16):1507–17. DOI: 10.1056/NEJMoa1407222

80. Maude S.L., Laetsch T.W., Buechner J. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018;378(5):439–48. DOI: 10.1056/NEJMoa1709866

81. O’Leary M.C., Lu X., Huang Y. et al. FDA approval summary: tisagenlecleucel for treatment of patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Clin Cancer Res 2019;25(4):1142–6. DOI: 10.1158/1078-0432.CCR-18-2035

82. Государственный реестр лекарственных цен. Регистрационное удостоверение препарата Кимрая. Доступно по: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=9b10523c-a956-455d-bf97-ef27653f3e44

83. Kochenderfer J.N., Dudley M.E., Kassim S.H. et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 2015;33(6):540–9. DOI: 10.1200/JCO.2014.56.2025

84. Neelapu S.S., Locke F.L., Bartlett N.L. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 2017;377(26):2531–44. DOI: 10.1056/NEJMoa1707447

85. FDA okays second CAR-T for Kite. Nat Biotechnol 2020;38(9):1012. DOI: 10.1038/s41587-020-0676-z

86. Schuster S.J., Bishop M.R., Tam C.S. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 2019;380(1):45–56. DOI: 10.1056/NEJMoa1804980

87. Abramson J.S., Palomba M.L., Gordon L.I. et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 2020;396(10254):839–52. DOI: 10.1016/S0140-6736(20)31366-0

88. Albanyan O., Chavez J., Munoz J. The role of CAR-T cell therapy as second line in diffuse large B-cell lymphoma. Ther Adv Hematol 2022;13:20406207221141511. DOI: 10.1177/20406207221141511

89. Locke F.L., Miklos D.B., Jacobson C.A. et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N Engl J Med 2022;386(7):640–54. DOI: 10.1056/NEJMoa2116133

90. Kamdar M., Solomon S.R., Arnason J. et al. Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): results from an interim analysis of an open-label, randomised, phase 3 trial [published correction appears in Lancet 2022;400(10347):160]. Lancet 2022;399(10343): 2294–308. DOI: 10.1016/S0140-6736(22)00662-6

91. Bishop M.R., Dickinson M., Purtill D. et al. Second-line tisagenlecleucel or standard care in aggressive B-cell lymphoma. N Engl J Med 2022;386(7):629–39. DOI: 10.1056/NEJMoa2116596

92. Wang M., Munoz J., Goy A. et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med 2020;382(14):1331–42. DOI: 10.1056/NEJMoa1914347

93. Huang Z., Chavda V.P., Bezbaruah R. et al. CAR T-Cell therapy for the management of mantle cell lymphoma. Mol Cancer 2023;22(1):67. DOI: 10.1186/s12943-023-01755-5

94. Jacobson C.A., Chavez J.C., Sehgal A.R. et al. Axicabtagene ciloleucel in relapsed or refractory indolent nonHodgkin lymphoma (ZUMA-5): a single-arm, multicentre, phase 2 trial. Lancet Oncol 2022;23(1):91–103. DOI: 10.1016/S1470-2045(21)00591-X

95. Fowler N.H., Dickinson M., Dreyling M. et al. Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: the phase 2 ELARA trial. Nat Med 2022;28(2):325–32. DOI: 10.1038/s41591-021-01622-0

96. Brentjens R.J., Davila M.L., Riviere I. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapyrefractory acute lymphoblastic leukemia. Sci Transl Med 2013;5(177):177ra38. DOI: 10.1126/scitranslmed.3005930

97. Lee D.W., Kochenderfer J.N., Stetler-Stevenson M. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 2015;385(9967):517–28. DOI: 10.1016/S0140-6736(14)61403-3

98. Shah B.D., Ghobadi A., Oluwole O.O. et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 2021;398(10299):491–502. DOI: 10.1016/S0140-6736(21)01222-8

99. Kalos M., Levine B.L., Porter D.L. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011;3(95):95ra73. DOI: 10.1126/scitranslmed.3002842

100. Gill S., Vides V., Frey N.V. et al. Anti-CD19 CAR T cells in combination with ibrutinib for the treatment of chronic lymphocytic leukemia [published correction appears in Blood Adv 2023;7(21):6567]. Blood Adv 2022;6(21):5774–85. DOI: 10.1182/bloodadvances.2022007317

101. Siddiqi T., Maloney D.G., Kenderian S.S. et al. Lisocabtagene maraleucel in chronic lymphocytic leukaemia and small lymphocytic lymphoma (TRANSCEND CLL 004): a multicentre, open-label, single-arm, phase 1–2 study. Lancet 2023;402(10402):641–54. DOI: 10.1016/S0140-6736(23)01052-8

102. FDA Approves Lisocabtagene Maraleucel for Relapsed or Refractory CLL or SLL. Available at: https://www.onclive.com/view/fda-approves-lisocabtagene-maraleucel-for-relapsed-orrefractory-cll-or-sll

103. Yu B., Jiang T., Liu D. BCMA-targeted immunotherapy for multiple myeloma. J Hematol Oncol 2020;13(1):125. DOI: 10.1186/s13045-020-00962-7

104. Carpenter R.O., Evbuomwan M.O., Pittaluga S. et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res 2013;19(8):2048–60. DOI: 10.1158/1078-0432.CCR-12-2422

105. Raje N., Berdeja J., Lin Y. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med 2019;380(18):1726–37. DOI: 10.1056/NEJMoa1817226

106. Martin T., Usmani S.Z., Berdeja J.G. et al. Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J Clin Oncol 2023;41(6):1265–74. DOI: 10.1200/JCO.22.00842

107. San-Miguel J., Dhakal B., Yong K. et al. Cilta-cell or standard care in lenalidomide-refractory multiple myeloma. N Engl J Med 2023;389(4):335–47. DOI: 10.1056/NEJMoa2303379

108. ODAC Casts 11 to 0 Vote in Favor of Cilta-Cel in R/R Multiple Myeloma. Available at: https://www.cancernetwork.com/view/odac-casts-11-to-0-vote-in-favor-of-cilta-cel-in-r-r-multiplemyeloma

109. Zhang S., Gu C., Huang L. et al. The third-generation anti-CD30 CAR T-cells specifically homing to the tumor and mediating powerful antitumor activity. Sci Rep 2022;12(1):10488. DOI: 10.1038/s41598-022-14523-0

110. Hill L.C., Rouce R.H., Wu M.J. et al. Antitumor efficacy and safety of unedited autologous CD5.CAR T cells in relapsed/refractory mature T-cell lymphomas. Blood 2024;143(13):1231–41. DOI: 10.1182/blood.2023022204

111. Zhang Y., Li C., Du M. et al. Allogenic and autologous anti-CD7 CAR-T cell therapies in relapsed or refractory T-cell malignancies. Blood Cancer J 2023;13(1):61. DOI: 10.1038/s41408-023-00822-w

112. Xiang J., Devenport J.M., Carter A.J. et al. An “off-the-shelf” CD2 universal CAR-T therapy for T-cell malignancies. Leukemia 2023;37(12):2448–56. DOI: 10.1038/s41375-023-02039-z

113. Zhang M., Wei G., Zhou L. et al. GPRC5D CAR T cells (OriCAR-017) in patients with relapsed or refractory multiple myeloma (POLARIS): a first-in-human, single-centre, single-arm, phase 1 trial. Lancet Haematol 2023;10(2):e107–16. DOI: 10.1016/S2352-3026(22)00372-6

114. Brown C.E., Hibbard J.C., Alizadeh D. et al. Locoregional delivery of IL-13Rα2-targeting CAR-T cells in recurrent high-grade glioma: a phase 1 trial [published correction appears in Nat Med 2024]. Nat Med 2024. DOI: 10.1038/s41591-024-02875-1

115. Qi C., Gong J., Li J. et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med 2022;28(6):1189–98. DOI: 10.1038/s41591-022-01800-8

116. Müller F., Taubmann J., Bucci L. et al. CD19 CAR T-cell therapy in autoimmune disease – a case series with follow-up. N Engl J Med 2024;390(8):687–700. DOI: 10.1056/NEJMoa2308917

117. Zheng Z., Li S., Liu M. et al. Fine-tuning through generations: advances in structure and production of CAR-T therapy. Cancers (Basel) 2023;15(13):3476. DOI: 10.3390/cancers15133476

118. https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32007R1394

119. Trias E., Juan M., Urbano-Ispizua A., Calvo G. The hospital exemption pathway for the approval of advanced therapy medicinal products: an underused opportunity? The case of the CAR-T ARI-0001. Bone Marrow Transplant 2022;57(2):156–9. DOI: 10.1038/s41409-021-01463-y

120. Maschan M., Caimi P.F., Reese-Koc J. et al. Multiple site place-ofcare manufactured anti-CD19 CAR-T cells induce high remission rates in B-cell malignancy patients. Nat Commun 2021;12(1):7200. DOI: 10.1038/s41467-021-27312-6

121. Kekre N., Hay K.A., Webb J.R. et al. CLIC-01: manufacture and distribution of non-cryopreserved CAR-T cells for patients with CD19 positive hematologic malignancies. Front Immunol 2022;13:1074740. DOI: 10.3389/fimmu.2022.1074740

122. Sergeev V.S., Emelyanova N.V., Markelov V.V. et al. Production of autologous T-lymphocytes with anti-CD19 chimeric antigen receptor using an automated, completely closed and serum-free technological process. Cell Ther Transplant 2023;12(4):50–7.

123. A Galapagos company CellPoint. Available at: https://www.glpg.com/about-us/cellpoint/

124. Kersten M.J., Saevels K., Beguin Y. et al. Seven-day vein-tovein point-of-care manufactured CD19 CAR T cells (GLPG5101) in relapsed/refractory NHL: results from the phase 1 Atalanta-1 trial. Blood 2023;142 (Suppl 1):2113.

125. Российская газета. Федеральный закон от 4 августа 2023 года № 466-ФЗ «О внесении изменений в статью 4 Федерального закона «Об обращении лекарственных средств» и Федеральный закон «О биомедицинских клеточных продуктах». Доступно по: https://rg.ru/documents/2023/08/08/fz466-site-dok.html

126. Российская газета. Минздрав зарегистрировал лекарство от рака за 39 млн рублей. Доступно по: https://rg.ru/2023/04/19/minzdrav-zaregistriroval-lekarstvo-ot-raka-za-39-mln-rublej.html


Рецензия

Для цитирования:


Попова М.О., Маркелов В.В. CAR-T: от идеи до применения. Онкогематология. 2024;19(3):185-198. https://doi.org/10.17650/1818-8346-2024-19-3-185-198

For citation:


Popova M.О., Markelov V.V. CAR-T: from bench to bedside. Oncohematology. 2024;19(3):185-198. (In Russ.) https://doi.org/10.17650/1818-8346-2024-19-3-185-198

Просмотров: 196


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)