Preview

Онкогематология

Расширенный поиск

Гемобластозы миелоидного происхождения

https://doi.org/10.17650/1818-8346-2011-6-3-82-93

Полный текст:

Аннотация

.

Об авторе

Д. А. Домнинский
ФГБУ Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева Минздравсоцразвития России
Россия


Список литературы

1. Vardiman J., Thiele J., Arber D. et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009;114:937–51.

2. Tefferi A., Gilliland G. Oncogenes in myeloproliferative disorders. Cell Cycle 2007;6:550–66.

3. Noble M., Endicott J., Johnson L. Protein kinase inhibitors: insights into drug design from structure. Science 2004;303:1800–5.

4. Lemmon M., Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010;141:1117–34.

5. Toffalini F., Demoulin J.B. New insights into the mechanisms of hematopoietic cell transformation by activated receptor tyrosine kinases. Blood 2010;116:2429–37.

6. Jura N., Zhang X., Endres N. et al. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Mol Cell 2011;42:9–22.

7. Taylor S., Kornev A. Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem Sci 2011;36:65–77.

8. Matsumura I., Mizuki M., Kanakura Y. Roles for deregulated receptor tyrosine kinases and their downstream signaling molecules in hematologic malignancies. Cancer Sci 2008;99:479–85.

9. Griffith J., Black J., Faerman C. et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell 2004;13:169–78.

10. Hubbard S. Juxtamembrane autoinhibition in receptor tyrosine kinases. Nat Rev Mol Cell Biol 2004;5:464–71.

11. Reindl C., Spiekermann K. From kinases to cancer. Leakiness, loss of autoinhibition and leukemia. Cell Cycle 2006;5:599–602.

12. Jatiani1 S., Baker S., Silverman L., Reddy P. JAK/STAT pathways in cytokine signaling and myeloproliferative disorders: approaches for targeted therapies. Genes Cancer 2010;1:979–93.

13. Chalandon Y., Schwaller J. Targeting mutated protein tyrosine kinases and their signaling pathways in hematologic malignancies. Haematologica 2005;90:949–68.

14. Krause D., van Etten R. Tyrosine kinases as targets for cancer therapy. New Engl J Med 2005;353:172–87.

15. Bain B. Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB or FGFR1. Haematologica 2010;95:696–8.

16. Gotlib J., Cools J. Five years since the discovery of FIP1L1-PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia 2008;22:1999–2010.

17. Schwartz R. A molecular star in the wars against cancer. New Engl J Med 2002;347:462–3.

18. Curtis C., Grand F., Musto P. et al. Two novel imatinib-responsive PDGFRA fusion genes in chronic eosinophilic leukaemia. Brit J Haematology 2007;138:77–81.

19. Eswaran J., Knapp S. Insights into protein kinase regulation and inhibition by large scale structural comparison. BiochimBiophys Acta 2010;1804:429–32.

20. Sugimoto Y., Muramatsu H., Makishima H. et al. Spectrum of molecular defects in juvenile myelomonocytic leukaemia includes ASXL1 mutations. Brit J Haematol 2010;150:83–7.

21. Chan R., Feng G.S. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood 2007;109:862–7.

22. Matozaki T., Murata Y., Saito Y. et al. Protein tyrosine phosphatase SHP-2: a protooncogene product that promotes Ras activation. Cancer Sci 2009;100:1786–93.

23. Ostman A., Hellberg C., Bohmer F. Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 2006;6:307–20.

24. Esteller M. Epigenetics provides a new generation of oncogenes and tumour-suppressor genes. Brit J Cancer 2006;94:179–83.

25. Krivtsov A., Armstrong S. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 2007;7:823–33.

26. Slany R. The molecular biology of mixed lineage leukemia. Haematologica 2009;94:984–93.

27. Marschalek R. Mixed lineage leukemia: roles in human malignancies and potential therapy. FEBS J 2010;277:1822–31.

28. Cosgrove M., Patel A. Mixed lineage leukemia: a structure-function perspective of the MLL1 protein. FEBS J 2010;277:1832–42.

29. Marschalek R. Mechanisms of leukemogenesis by MLL fusion proteins. Brit J Haematology 2011;152:141–54.

30. Mohan M., Lin C., Guest E., Shilatifard A. Licensed to elongate: a molecular mechanism for MLL-based leukaemogenesis. Nat Rev Cancer 2010;10:721–8.

31. Basecke J., Whelan J., Griesinger F., Bertrand F. The MLL partial tandem duplication in acute myeloid leukaemia. Brit J Haematology 2006;135:438–49.

32. Greaves M. Childhood leukaemia. Molecular genetics provide exciting new insights into the pathogenesis of childhood leukaemia. Brit Med J 2002;324:283–7.

33. Wiemels J. Chromosomal translocations in childhood leukemia: natural history, mechanisms and epidemiology. J Natl Cancer Inst Monographs 2008;39:87–90.

34. Meyer C., Kowarz E., Hofman J. et al. New insights to the MLL recombinome of acute leukemias. Leukemia 2009;23:1490–9.

35. Balgobind B., Raimondi S., Harbott J. et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood 2009;114:2489–96.

36. Liu H., Cheng E., Hsieh J. MLL fusions. Pathways to leukemia. Cancer Biol & Therapy 2009;8:1204–11.

37. Frohling S., Dohner H. Chromosomal abnormalities in cancer. New Engl J Med 2008;359:722–34


Для цитирования:


Домнинский Д.А. Гемобластозы миелоидного происхождения. Онкогематология. 2011;6(3):82-93. https://doi.org/10.17650/1818-8346-2011-6-3-82-93

For citation:


Domninsky D.A. Myeloid hematological malignancies. Oncohematology. 2011;6(3):82-93. (In Russ.) https://doi.org/10.17650/1818-8346-2011-6-3-82-93

Просмотров: 520


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)