Нарушения в системе белка р53 и их влияние на патогенез хронических лимфопролиферативных заболеваний
https://doi.org/10.17650/1818-8346-2011-6-3-65-75
Аннотация
В настоящее время активно обсуждается роль белков семейства р53 как в рамках патогенеза хронических лимфопролиферативных заболеваний, так и в свете растущего интереса к терапевтическому потенциалу так называемых малых молекул, способных влиять на регуляторные «взаимоотношения» молекул р53, MDM2, p21 и PUM A. Представленная статья является попыткой обобщить данные экспериментальных моделей на тканях опухоли и мышиных моделях и доступных в литературе исследований с использованием материала лимфоидных опухолей человека. Рассмотрены как аспекты прогностической значимости экспрессии белков семейства р53 при лимфопролиферативных заболеваниях, так и возможные терапевтические подходы, использующие
особенности взаимоотношений р53-молекулы с генами-регуляторами и эффекторами.
Ключевые слова
Об авторах
П. М. КондратовскийРоссия
А. И. Дубиков
Россия
А. Ю. Дорошевская
Россия
Список литературы
1. Новиков B.C. Программированная клеточная гибель. СПб.: «Наука», 1996.
2. Hansen R., Oren M. P53 from inductive signal to cellular effect. Curr Opin Genet 1997;7:46–51.
3. Bakhshi A.J., Jensen P., Goldman P. et al. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 1985;41:889–906.
4. Tsujimoto Y., Gorham J., Cossman J. et al. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 1985;229:1390–3.
5. Deary M., Smith S., Sclar J. Cloning and structional analysis of cDNAs Bcl-2 and a hybrid Bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 1986;47:19–23.
6. Kelekar Т., Thompson C. Bcl-2 family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol 1998;8:324–30.
7. Puthalakath H., Huang D., OʼReily L. et al. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 1999;3:287–96.
8. Oltvai Z., Korsmeyer S. Checkpoints of dueling dimers foil death wishes. Cell 1994;79:189–92.
9. Bellido M., Capello D., Altes A. et al. Bcl-6 p53 mutations in lymphomas carrying the Bcl-2/Jh rearrangement. Haematologica 2002;87(9):908–17.
10. Scorpa A., Moore P.S., Rigaurd G. et al. Molecular features of primary mediastinal B-cell lymphoma: involvement of p16INK4A, p53 and c-myc. Br J Haematol 1999;107(1):106–13.
11. Gaidano G., Volpe G., Pastore C. et al. Detection of BCL-6 rearrangements and p53 mutations in MALT-lymphomas. Am J Hematol 1997;56(4):206–13.
12. Petit B., Leroy K., Kanavaros P. et al. Expression of p53 protein in T- and natural killer-cell lymphomas is associated with some clinicopathologic entities but rarely related to p53 mutations. Hum Pathol 2001 Feb;32(2):196–204.
13. Kapur S., Tiemann M., Menke M.A. et al. The role of p53 and anaplastic lymphoma kinase genes in the progression of cutaneous CD30(+) lymphoproliferative diseases. Indian J Med Res 2005 Jan;121(1):46–54.
14. Поддубная И.В. Лимфосаркома желудочно-кишечного тракта (клиника, диагностика, лечение). Автореф. дис. …докт. мед. наук. М., 1985.
15. Gruszka-Westwood A.M., Hamoudi R.A., Matutes E. et al. P53 abnormalities in splenic lymphoma with villous lymphocytes. Blood 2001 Jun 1;97(11):3552–8.
16. Greiner T.C., Moynihan M.J., Chan W.C. et al. P53 mutations in mantle cell lymphoma are associated with variant cytology and predict a poor prognosis. Blood 1996 May 15;87(10):4302–10.
17. Sander C.A., Yano T., Clark H.M. et al. P53 mutation is associated with progression in follicular lymphomas. Blood 1993 Oct 1;82(7):1994–2004.
18. Villuendas R., Piris M.A., Orradre J.L. et al. P53 protein expression in lymphomas and reactive lymphoid tissue. J Pathol 1992 Mar;166(3):235–41.
19. Cordone I., Masi S., Mauro F.R. et al. P53 expression in B-cell chronic lymphocytic leukemia: a marker of disease progression and poor prognosis. Blood 1998 Jun 1;91(11):4342–9.
20. Yu J., Zhang L. No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell 2003;4:248–9.
21. Michalak E.M., Villunger A., Adams J.M. et al. In several cell types tumour suppressor p53 induces apoptosis largely via Puma but Noxa can contribute. Cell Death Differ 2008;15:1019–29.
22. Garrison S.P., Jeffers J.R., Yang C. et al. Selection against PUMA gene expression in Myc-driven B cell lymphomagenesis. Mol Cell Biol 2008;28:5391–402.
23. Labi V., Erlacher M., Krumschnabel G. et al. Apoptosis of leukocytes triggered by acute DNA damage promotes lymphoma formation. Genes Dev 2010 August 1; 24:1602–7; oi:10.1101/gad.1940210.
24. Michalak E.M., Vandenberg C.J., Delbridge A.R., Wu L., Scott C.L., Adams J.M., Strasser A. Apoptosis-promoted tumorigenesis: gamma-irradiation-induced thymic lymphomagenesis requires Pumadriven leukocyte death. Genes Dev 2010August 1;24:1608–13; doi:10.1101/gad.1940110.
25. Zhu H.J., Xu W., Cao X. et al. Detection of puma mRNA levels by real-time quantitative RT-PCR in chronic lymphocytic leukemia and its clinical significance. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2010 Aug;18(4):843–8.
26. Mackus W.J., Kater A.P., Grummels A. et al. Chronic lymphocytic leukemia cells display p53-dependent drug-induced Puma upregulation. Leukemia 2005 Mar;19(3):427–34.
27. El-Deiry W.S. Regulation of p53 downstream genes. Semin Cancer Biol 1998;8:345–57.
28. Deng Y., Chan S.S., Chang S. Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer 2008;8:450–8.
29. Halazonetis T.D., Gorgoulis V.G., Barteck J. An oncogene-induced DNA damage model for cancer development. Science 2008;319:1352–5.
30. Martins C.P., Brown-Swigart L., Evan G.I. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 2006;127:1323–34.
31. Ventura A., Xu G., Wang H. et al. Expressions of p53 and p21 in nasal NK/ T-cell lymphoma and their relationship with the proliferation and apoptosis of cells. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2009 Jan;23(2):73–6.
32. Xue W., Zender L., Miething C. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007;445:656–60.
33. Brown J.P., Wei W., Sedivy J.M. Bypass of senescence after disruption of p21CIP1/ WAF1 gene in normal diploid human fibroblasts. Science 1997;277:831–4.
34. Cosme-Blanco W., Shen M.F., Lazar A.J.F. et al. Telomere dysfunction suppresses spontaneous tumorigeesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep 2007;8:497–503.
35. Van Nguyen T., Puebla-Osorio N., Pang H. et al. DNA damage-induced cellular senescence is sufficient to suppress tumorigenesis: a mouse model. J Exp Med 2007;204:1453–61.
36. Barboza J.A., Liu G., El-Naggar A.K. et al. p21 delays tumor onset by preservation of chromosomal stability. Proc Natl Acad Sci USA 2006;103:19842–7.
37. De la Cueva E., García-Cao I., Herranz M. et al. Tumorigenic activity of p21Waf1/Cip1 in thymic lymphoma. Oncogene 2006 Jul 6;25(29):4128–32. Epub 2006 Feb 6. 38. Chilosi M., Doglioni C., Magalini A. et al. p21/WAF1 cyclin-kinase inhibitor expression in non-Hodgkin's lymphomas: a potential marker of p53 tumor-suppressor gene function. Blood 1996 Nov 15; 88(10):4012–20.
38. Xu G., Wang H., He G. et al. Expressions of p53 and p21 in nasal NK/T-cell lymphoma and their elationship with the proliferation and apoptosis of cells. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2009 Jan;23(2):73–6.
39. Go J.H., Yang W.I. Expressions of p53 and p21 in primary gastric lymphomas. J Korean Med Sci 2001 Dec;16(6):731–5.
40. Marine J.C., Francoz S., Maetens M. et al. Keeping p53 in check: essential and synergistic functions of MDM2 and MDM4. Cell Death Differ 2006;13:927–34.
41. Marine J.C., Dyer M.A., Jochemsen A.G. MDMX: from bench to bedside. J Cell Sci 2007;120:371–8.
42. Poyurovsky M.V., Prives C. Unleashing the power of p53: lessons from mice and men. Genes Dev 2006;20:125–31.
43. Toledo F.G., Wahl M. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 2006;6:909–23.
44. Itahana K., Mao H., Jin A. et al. Targeted inactivation of MDM2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell 2007;12:355–66.
45. Ito A., Lai C.H., Zhao X. et al. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J 2001;20:1331–40.
46. Teufel D.P., Freund S.M., Bycroft M. et al. Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proc Natl Acad Sci USA 2007;104:7009–14.
47. Ohkubo S., Tanaka T., Taya Y. et al. Excess HDM2 impacts cell cycle and apoptosis and has a selective effect on p53-dependent transcription. J Biol Chem 2006;281:16943–50.
48. Tang Y., Zhao W., Chen Y., et al. Acetylation is indispensable for p53 activation. Cell 2008;133:612–26.
49. Minsky N., Oren M. The RING domain of Mdm2 mediates histone ubiquitylation and transcriptional repression. Mol Cell 2004;16:631–9.
50. Tzardi M., Kouvidou Ch., Panayiotides I. et al. p53 protein expression in non- Hodgkin's lymphoma. Comparative study with the wild type p53 induced proteins MDM2 and p21/waf1. Clin Mol Pathol 1996 Oct;49(5):278–82.
51. Stefanaki K., Tzardi M., Kouvidou C. et al. Expression of p53, p21, MDM2, Rb, Bax and Ki67 proteins in lymphomas of the mucosa-associated lymphoid (MALT) tissue. Anticancer Res 1998 Jul–Aug; 18(4A):2403–8.
52. Camacho F.I., Bellas C., Corbacho C. et al. Improved demonstration of immunohistochemical prognostic markers for survival in follicular lymphoma cells. Mod Pathol 2011 May;24(5):698–707. Epub 2011 Jan 14.
53. Wang P., Lushnikova T., Odvody J. et al. Elevated MDM2 expression induces chromosomal instability and confers a survival and growth advantage to B cells. Oncogene 2008 Mar 6;27(11):1590–8.
54. Cui Y.X., Kerby A., McDuff F.K. et al. NPM-ALK inhibits the p53 tumor suppressor pathway in an MDM2 and JNK-dependent manner. Blood 2009 May 21;113(21):5217–27.
55. Kojima K., Konopleva M., McQueen T. et al. MDM2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcriptiondependent and transcription-independent mechanisms and may overcome Atmmediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 2006 August 1; 108(3):993–1000.
56. Senzer N., Nemunaitis J. A review of contusugene ladenovec (Advexin) p53 therapy. Curr Opin Mol Ther 2009;11:54–61.
57. Lain S., Hollick J.J., Campbell J. et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 2008;13:454–63.
58. Ringshausen I., O’Shea C.C., Finch A.J. et al. MDM2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 2006;10:501–14.
59. Brummelkamp T.R., Fabius A.W., Mullenders J. et al. An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat Chem Biol 2006;2:202–6.
60. Selivanova G., Wiman K.G. Reactivation of mutant p53: molecular mechanisms and therapeutic potential. Oncogene 2007;26:2243–54.
61. Drakos E., Atsaves V., Li J. et al. Stabilization and activation of p53 downregulates mTOR signaling through AMPK in mantle cell lymphoma. Leukemia 2009 Apr;23(4):784–90.
62. Jin L., Tabe Y., Kojima K. et al. MDM2 antagonist Nutlin-3 enhances bortezomibmediated mitochondrial apoptosis in TP53- mutated mantle cell lymphoma. Cancer Lett 2010 Dec 28;299(2):161–70.
63. Tabe Y., Sebasigari D., Jin L. et al. DM2 antagonist nutlin-3 displays antiproliferative and proapoptotic activity in mantle cell lymphoma. Clin Cancer Res 2009 Feb 1;15(3):933–42.
64. Drakos E., Atsaves V., Schlette E. et al. The therapeutic potential of p53 reactivation by nutlin-3a in ALK+ anaplastic large cell lymphoma with wild-type or mutated p53. Leukemia 2009 Dec;23(12):2290–9.
65. Coll-Mulet L., Iglesias-Serret D., Santidrián A.F. et al. MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood 2006 May 15; 107(10):4109–14.
66. Mohammad R.M., Wu J., Azmi A.S. et al. An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals. Mol Cancer 2009 Dec 3;8:115.
67. Jones R.J., Chen Q., Voorhees P.M. et al. Inhibition of the p53 E3 ligase HDM-2 induces apoptosis and DNA damage —independent p53 phosphorylation in mantle cell lymphoma. Clin Cancer Res 2008 Sep 1;14(17):5416–25.
68. Petitjean A., Achatz M.I., Borresen-Dale A.L. et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 2007;26:2157–65.
69. Bertheau P., Espie M., Turpin E. et al. TP53 status and response to chemotherapy in breast cancer. Pathobiology 2008; 75:132–9.
70. Sur S., Pagliarini R., Bunz F. et al. A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc Natl Acad Sci USA 2009;106:3964–9.
71. Carvajal D., Tovar C., Yang H. et al. Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. Cancer Res 2005;65:1918–24.
72. Kranz D., Dobbelstein M. Nongenotoxic p53 activation protects cells against S-phasespecific chemotherapy. Cancer Res 2006;66:10274–80.
73. Gudkov A.V., Komarova E.A. Prospective therapeutic applications of p53 inhibitors. Biochem Biophys Res Commun 2005;331:726–36.
74. Strom E., Sathe S., Komarov P.G. et al. Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2006;2:474–9.
Рецензия
Для цитирования:
Кондратовский П.М., Дубиков А.И., Дорошевская А.Ю. Нарушения в системе белка р53 и их влияние на патогенез хронических лимфопролиферативных заболеваний. Онкогематология. 2011;6(3):65-75. https://doi.org/10.17650/1818-8346-2011-6-3-65-75
For citation:
Kondratovskiy P.M., Dubikov A.I., Doroshevskaya A.Yu. P53 pathway changes and their influence on chronic lymphoproliferative diseases pathogenesis. Oncohematology. 2011;6(3):65-75. (In Russ.) https://doi.org/10.17650/1818-8346-2011-6-3-65-75