Monoclonal immunoglobulin as a prognostic factor for the severity of bone damage in paraproteinemic hemoblastoses and Waldenström’s macroglobulinemia
https://doi.org/10.17650/1818-8346-2024-19-1-56-69
Abstract
Aim. Identify risk factors for the development of osteodestructive syndrome. To determine the relationship between the types of secreted monoclonal immunoglobulin (paraprotein) and the severity of osteodestructive syndrome in patients with paraproteinemic hemoblastoses (PH) and Waldenström’s macroglobulinemia (WM).
Materials and methods. A retrospective analysis of data from 116 patients with PH and WM was performed. 104 patients (89.6 %) were diagnosed with multiple myeloma. Less commonly observed were WM (in 8 patients – 6.9 %), plasma cell leukemia (in 2 patients – 1.8 %), solitary plasmacytoma and monoclonal gammopathy of unknown significance were diagnosed in one case (0.9 %) each. According to the severity of osteodestructive syndrome, all patients were divided into 4 groups. The first group (0) included patients who did not have osteodestructive changes in the bones. In patients of the second group, a mild degree (I) osteodestructive process was observed, and in patients from the third and fourth groups – moderate (II) and severe (III) degrees, respectively. All patients underwent protein electrophoresis followed by immunofixation to determine the type of paraprotein and its concentration in serum and urine.
Results. In the majority of patients, paraproteins were detected in the blood – Gκ (35.1 %), Gλ (24.6 %), Bence Jones protein λ-type (BJλ) (14.9 %); in urine – BJλ protein (14.9 %) and Bence Jones protein κ-type (BJκ) (28.1 %). Secretion of other types of paraproteins in the blood was less frequently detected – Aκ (9.6 %), Aλ (7.0 %), Mκ (3.5 %), Mλ (3.5 %), Dλ (2.6 %), BJκ (4.4 %). Osteodestructive syndrome of I and II severity was diagnosed in 43 (37.1 %) and 40 (34.5 %) patients, respectively; lytic destruction of III degree was less frequently detected in 20 (17.2 %) patients, in 13 (11.2 %) patients osteodestruction was not detected (degree 0). It was noted that a higher degree of destruction (II, III) was observed in patients with multiple myeloma occurring with paraproteinemia Dλ and BJλ in the blood, as well as hypercalcemia. Osteodestructive syndrome of the lowest degree (0, I) was diagnosed in patients with the secretion of monoclonal proteins Ak and Mλ. There was no statistically significant relationship between the type of secretion of paraproteins Gκ, Gλ, Aλ, Mκ, BJκ in the blood, as well as proteins BJκ and BJλ in the urine and the severity of the osteodestructive process.
Conclusion. The results obtained in the study make it possible to identify risk groups, and parameters such as the type of paraprotein, the concentration of calcium in the blood serum can be considered as prognostic factors when assessing the severity of osteodestructive syndrome in patients with PH and WM.
About the Authors
O. N. PisarevskayaRussian Federation
Ol’ga Nikolaevna Pisarevskaya
3 Gospital’naya Ploshchad’, Moscow 105094
S. A. Alekseev
Russian Federation
3 Gospital’naya Ploshchad’, Moscow 105094
O. A. Rukavitsyn
Russian Federation
3 Gospital’naya Ploshchad’, Moscow 105094
References
1. WHO classification of tumours oh haematopoetic and lymphoid tissues. Eds.: S.H. Swerdlov, E. Campo, N.L. Harris et al. Revised 4th ed.
2. Votyakova O.M., Mendeleeva L.P., Stadnik E.A. Waldenström’s macroglobulinemia. Clinical guidelines, 2020. (In Russ.).
3. Vorob’ev A.I. Guide to Hematology. Vol. 1. Moscow: N’yudiamed, 2005. 280 p. (In Russ.).
4. Pop V.P., Rukavitsyn O.A. Multiple myeloma and related diseases. Moscow: GEOTAR-Media, 2016. 224 p. (In Russ.).
5. Rajkumar S.V., Dimopoulos M.A., Palumbo A. et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014;15(12):e538–48. DOI: 10.1016/S1470-2045(14)70442-5
6. Mendeleeva L.P., Votyakova O.M., Rekhtina I.G. Multiple myeloma. Clinical guidelines, 2020. (In Russ.).
7. Willrich M.A., Katzmann J.A. Laboratory testing requirements for diagnosis and follow up of multiple myeloma and renal plasma cell dyscrasias. Clin Chem Lab Med 2016;54(6):907–19. DOI: 10.1515/cclm-2015-0580
8. Rekhtina I.G., Mendeleeva L.P., Soboleva N.P. et al. Determination of paraprotein in plasma cell tumors. Terapevticheskiy arhiv = Therapeutic Archive 2022;94(1):135–44. (In Russ.). DOI: 10.26442/00403660.2022.01.201326
9. Bhatti K., Nazir A., Ostergaard S. et al. Bone involvement as a primary rare manifestation of Waldenstrom macroglobulinemia: a case report and prevalence in a nationwide population-based cohort study. J Hematol 2022;11(6):233–9. DOI: 10.14740/jh1073
10. Dougall W.C. RANKL signaling in bone physiology and cancer. Curr Opin Support Palliat Care 2007;1(4):317–22. DOI: 10.1097/SPC.0b013e3282f335be
11. Boyce B.F., Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 2008;473(2):139–46. DOI: 10.1016/j.abb.2008.03.018
12. Delmas P.D. Clinical potential of RANKL inhibition for the management of postmenopausal osteoporosis and other metabolic bone diseases. J Clin Densitom 2008;11(2):325–38. DOI: 10.1016/j.jocd.2008.02.002
13. Kukita A., Kukita T. Multifunctional properties of RANKL/RANK in cell differentiation, proliferation and metastasis. Future Oncol 2013;9(11):1609–22. DOI: 10.2217/fon.13.115
14. Whyte M.P., Mumm S. Heritable disorders of the RANKL/OPG/ RANK signaling pathway. J Musculoskelet Neuronal Interact 2004;4(3):254–67.
15. Mundy G.R., Raisz L.G., Cooper R.A. et al. Evidence for the secretion of an osteoclast stimulating factor in myeloma. N Engl J Med 1974;291(20):1041–6. DOI: 10.1056/NEJM197411142912001
16. Mundy G.R., Luben R.A., Raisz L.G. et al. Bone-resorbing activity in supernatants from lymphoid cell lines. N Engl J Med 1974;290(16):867–71. DOI: 10.1056/NEJM197404182901601
17. Valentin-Opran A., Charhon S.A., Meunier P.J. et al. Quantitative histology of myeloma-induced bone changes. Br J Haematol 1982;52(4):601–10. DOI: 10.1111/j.1365-2141.1982.tb03936.x
18. Bataille R., Chappard D., Marcelli C. et al. Recruitment of new osteoblasts and osteoclasts is the earliest critical event in the pathogenesis of human multiple myeloma. J Clin Invest 1991;88(1):62–6. DOI: 10.1172/JCI115305
19. Taube T., Beneton M.N., McCloskey E.V. et al. Abnormal bone remodelling in patients with myelomatosis and normal biochemical indices of bone resorption. Eur J Haematol 1992;49(4):192–8. DOI: 10.1111/j.1600-0609.1992.tb00046.x
20. Dowling P., Hayes C., Reen Ting K. et al. Identification of proteins found to be significantly altered when comparing the serum proteome from multiple myeloma patients with varying degrees of bone disease. BMC Genomics 2014;15(1):904. DOI: 10.1186/1471-2164-15-904
21. Mylin A.K., Abildgaard N., Johansen J.S. et al. High serum YKL-40 concentration is associated with severe bone disease in newly diagnosed multiple myeloma patients. Haematol 2008;80(4):310–7. DOI: 10.1111/j.1600-0609.2007.01027.x
22. Durie B.G., Salmon S.E. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 1975;36(3):842–54. DOI: 10.1002/1097-0142(197509)36: 3<842::aid-cncr2820360303>3.0.co;2-u
23. Reinberg S.A. X-ray diagnosis of diseases of bones and joints. Vol. I–II, Moscow: Meditsina, 1964. 1103 p. (In Russ.).
24. Mourad C., Cosentino A., Lalonde M.N., Omoumi P. Advances in bone marrow imaging: strengths and limitations from a clinical perspective. Semin Muskuloskelet Radiol 2023;27(1):3–21. DOI: 10.1055/s-0043-1761612 25. Moreau P., Attal M., Caillot D. et al. Prospective evaluation of magnetic resonance imaging and (18)fluorodeoxyglucose positron emission tomography-computed tomography at diagnosis and before maintenance therapy in symptomatic patients with multiple myeloma included in the IFM/DFCI 2009 trial: results of the IMAJEM study. J Clin Oncol 2017;35:2911–8. DOI: 10.1200/JCO.2017.72.2975
25. Dimopoulos M.A., Hillengass J., Usmani S. et al. Role of magnetic resonans imaging in the management of patients with multiple myeloma: a consensus statement. J Clin Oncol 2015;33(6):657–64. DOI: 10.1200/JCO.2014.57.9961
26. Hillengass J., Usmani S., Rajkumar S.V. et al. International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet Oncol 2019;20: e302–12. DOI: 10.1016/S1470-2045(19)30309-2
27. Pawlyn C., Fowkes L., Otero S. et al. Whole-body diffusionweighted MRI: A new gold standard for assessing disease burden in patients with multiple myeloma? Leukemia 2016;30:1446–8. DOI: 10.1038/leu.2015.338
28. Van Den Berghe T., Verstraete K.L., Lecouvet F.E. et al. Review of diffusion-weighted imaging and dynamic contrast-enhanced MRI for multiple myeloma and its precursors (monoclonal gammopathy of undetermined significance and smouldering myeloma). Skeletal Radiol 2022;51(1):101–22. DOI: 10.1007/s00256-021-03903-8
29. Lutsik N.S., Mendeleeva L.P., Yatsik G.A. Informative value of whole-body magnetic resonance imaging with diffusion-weighted images for the detection of bone marrow infiltration in patients with multiple myeloma (literature review). Onkogematologiya = Oncohematology 2022;17(1):87–94. (In Russ.). DOI: 10.17650/1818834620221718794
30. Hagen P., Zhang J., Barton K. High-risk disease in newly diagnosed multiple myeloma: beyond the R-ISS and IMWG definitions. Blood Cancer J 2022;12(5):83. DOI: 10.1038/s41408-022-00679-5
31. Hose D., Beck S., Salwender H. et al. Prospective target assessment and multimodal prediction of survival for personalized and riskadapted treatment strategies in multiple myeloma in the GMMGMM5 multicenter trial. J Hematol Oncol 2019;12(1):65. DOI: 10.1186/s13045-019-0750-5
32. Rugal V.I., Bessmeltsev S.S., Semenova N.Yu. et al. Charcteristics of bone marrow microenvironment in multiple myeloma befor and after treatment. Sibirskiy nauchnyy meditsinskiy zhurnal = Siberian Scientific Medical Journal 2019;39(1):112–8. (In Russ.).
33. Usmani S.Z., Mitchell A., Waheed S. et al. Prognostic implications of serial 18-fluoro-deoxyglucose emission tomography in multiple myeloma treated with total therapy 3. Blood 2013;121(10):1819–23. DOI: 10.1182/blood-2012-08-451690
34. Bartel T.B., Haessler J., Brown T.L. et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 2009;114(10):2068–76. DOI: 10.1182/blood-2009-03-213280
35. Walker R., Barlogie B., Haessler J. et al. Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol 2007;25(9):1121–8. DOI: 10.1200/JCO.2006.08.5803
36. Rasche L., Angtuaco E., Alpe T. et al. The presence of large focal lesions is a strong independent prognostic factor in multiple myeloma. Blood 2018;132(1):59–66. DOI: 10.1182/blood-2018-04-842880
37. Moulopoulos L.A., Dimopoulos M.A., Kastritis E. et al. Diffuse pattern of bone marrow involvement on magnetic resonance imaging is associated with high risk cytogenetics and poor outcome in newly diagnosed, symptomatic patients with multiple myeloma: a single center experience on 228 patients. Am J Hematol 2012;87(9):861–4. DOI: 10.1002/ajh.23258
38. Bernstein Z.S., Kim E.B., Raje N. Bone disease in multiple myeloma: biologic and clinical implications. Cells 2022;11(15):2308. DOI: 10.3390/cells11152308
39. Kanellias N., Ntanasis-Stathopoulos I., Gavriatopoulou M. et al. Newly diagnosed multiple myeloma patients with skeletal-related events and abnormal MRI pattern have poor survival outcomes: a prospective study on 370 patients. J Clin Med 2022;11(11):3088. DOI: 10.3390/jcm11113088
40. Zagouri F., Kastritis E., Zomas A. et al. Greek Myeloma Study Group. Hypercalcemia remains an adverse prognostic factor for newly diagnosed multiple myeloma patients in the era of novel antimyeloma therapies. Eur J Haematol 2017;99(5):409–14. DOI: 10.1111/ejh.12923
41. Bao L., Wang Y., Lu M. et al. Hypercalcemia caused by humoral effects and bone damage indicate poor outcomes in newly diagnosed multiple myeloma patients. Cancer Med 2020;9(23):8962–9. DOI: 10.1002/cam4.3594
42. Stone M.J., Pascual V. Pathophysiology of Waldenström’s macroglobulinemia. Haematologica 2010;95(3):359–64. DOI: 10.3324/haematol.2009.017251
43. Kyle R.A., Ansell S.M., Kapoor P. Prognostic factors and indications for treatment of Waldenström’s macroglobulinemia. Best Pract Res Clin Haematol 2016;29(2):179–86. DOI: 10.1016/j.beha.2016.08.014
Review
For citations:
Pisarevskaya O.N., Alekseev S.A., Rukavitsyn O.A. Monoclonal immunoglobulin as a prognostic factor for the severity of bone damage in paraproteinemic hemoblastoses and Waldenström’s macroglobulinemia. Oncohematology. 2024;19(1):56-69. (In Russ.) https://doi.org/10.17650/1818-8346-2024-19-1-56-69