Preview

Oncohematology

Advanced search

Glucocorticosteroid-induced complications in patients with idiopathic thrombocytopenic purpura

https://doi.org/10.17650/1818-8346-2023-18-4-233-243

Abstract

Glucocorticosteroids (GCS) are the first-line treatment for idiopathic thrombocytopenic purpura (ITP). Despite their high efficacy in patients with newly diagnosed ITP, an adequate level of platelets remains after GCS withdrawal in only less than 20 % of patients. Additionally, GCS use is associated with an increased risk of different adverse reactions, including serious and life-threatening ones. Thrombopoietin receptor agonists represent a relatively new class of drugs for treating ITP as a second-line therapy. This paper reviews the risks of GCS pharmacotherapy, as well as the evidence supporting the use of thrombopoietin receptor agonists as both first-line and second-line treatment for patients with ITP.

About the Authors

S. G. Zakharov
M.F. Vladimirskiy Moscow Regional Research Clinical Institute
Russian Federation

Sergey G. Zakharov 

61/2 Shchepkina St., Moscow 129110



T. A. Mitina
M.F. Vladimirskiy Moscow Regional Research Clinical Institute
Russian Federation

61/2 Shchepkina St., Moscow 129110



A. V. Zakharova
United Hospital with Outpatient Department, Administrative Department of the President of the Russian Federation
Russian Federation

Build. 15, 6 Michurinskiy Prospekt, Moscow 119285



R. V. Vardanyan
M.F. Vladimirskiy Moscow Regional Research Clinical Institute
Russian Federation

61/2 Shchepkina St., Moscow 129110



E. V. Kataeva
M.F. Vladimirskiy Moscow Regional Research Clinical Institute
Russian Federation

61/2 Shchepkina St., Moscow 129110



Yu. B. Chernykh
M.F. Vladimirskiy Moscow Regional Research Clinical Institute
Russian Federation

61/2 Shchepkina St., Moscow 129110



L. L. Vysotskaya
M.F. Vladimirskiy Moscow Regional Research Clinical Institute
Russian Federation

61/2 Shchepkina St., Moscow 129110



L. V. Ivanitskiy
M.F. Vladimirskiy Moscow Regional Research Clinical Institute
Russian Federation

61/2 Shchepkina St., Moscow 129110



I. N. Kontievskiy
M.F. Vladimirskiy Moscow Regional Research Clinical Institute
Russian Federation

61/2 Shchepkina St., Moscow 129110



O. P. Madzyara
M.F. Vladimirskiy Moscow Regional Research Clinical Institute
Russian Federation

61/2 Shchepkina St., Moscow 129110



O. R. Zhuravlev
M.F. Vladimirskiy Moscow Regional Research Clinical Institute
Russian Federation

61/2 Shchepkina St., Moscow 129110



N. V. Gorgun
M.F. Vladimirskiy Moscow Regional Research Clinical Institute
Russian Federation

61/2 Shchepkina St., Moscow 129110



Z. M. Kharasova
M.F. Vladimirskiy Moscow Regional Research Clinical Institute
Russian Federation

61/2 Shchepkina St., Moscow 129110



References

1. Rodeghiero F., Stasi R., Gernsheimer T. et al. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood 2009;113(11):2386–93. DOI: 10.1182/blood-2008-07-162503

2. Terrell D.R., Beebe L.A., Vesely S.K. et al. The incidence of immune thrombocytopenic purpura in children and adults: a critical review of published reports. Am J Hematol 2010;85(3): 174–80. DOI: 10.1002/ajh.21616

3. Doobaree I.U., Conway K., Miah H. et al. Incidence of adult primary immune thrombocytopenia in England – an update. Eur J Haematol 2022;109(3):238–49. DOI: 10.1111/ejh.13803

4. Adelborg K., Kristensen N.R., Nørgaard M. et al. Cardiovascular and bleeding outcomes in a population-based cohort of patients with chronic immune thrombocytopenia. J Thromb Haemost 2019;17(6):912–24. DOI: 10.1111/jth.14446

5. Cooper N., Kruse A., Kruse C. et al. Immune thrombocytopenia (ITP) World Impact Survey (I-WISh): impact of ITP on healthrelated quality of life. Am J Hematol 2021;96(2):199–207. DOI: 10.1002/ajh.26036

6. Clinical recommendations. Idiopathic thrombocytopenic purpura (ITP) in adults. 2021. Available at: https://cr.minzdrav.gov.ru/schema/150_2. (In Russ.).

7. Neunert C., Terrell D.R., Arnold D.M. et al. American Society of Hematology 2019 guidelines for immune thrombocytopenia. Blood Adv 2019;3(23):3829–66. DOI: 10.1182/bloodadvances.2019000966

8. Liu X.G., Bai X.C., Chen F.P. et al. Chinese guidelines for treatment of adult primary immune thrombocytopenia. Int J Hematol 2018;107(6):615–23. DOI: 10.1007/s12185-018-2445-z

9. Provan D., Arnold D.M., Bussel J.B. et al. Updated international consensus report on the investigation and management of primary immune thrombocytopenia. Blood Adv 2019;3(22):3780–817. DOI: 10.1182/bloodadvances.2019000812

10. Wei Y., Ji X.B., Wang Y.W. et al. High-dose dexamethasone vs prednisone for treatment of adult immune thrombocytopenia: a prospective multicenter randomized trial. Blood J Am Soc Hematol 2016;127(3):296–302. DOI: 10.1182/blood-2015-07-659656

11. Mithoowani S., Gregory-Miller K., Goy J. et al. High-dose dexamethasone compared with prednisone for previously untreated primary immune thrombocytopenia: a systematic review and metaanalysis. Lancet Haematol 2016;3(10):e489–96. DOI: 10.1016/S2352-3026(16)30109-0

12. Bhattacharya S., Ray S.S., Chakrabarti P. et al. A study on highdose dexamethasone versus prednisolone as frontline therapy in newly diagnosed immune thrombocytopenia in children. J Hematol Allied Sci 2022;1(3):111–7. DOI: 10.25259/jhas_12_2021

13. Cuker A., Liebman H.A. Corticosteroid overuse in adults with immune thrombocytopenia: cause for concern. Res Pract Thromb Haemost 2021;5(6):e12592. DOI: 10.1002/rth2.12592

14. Chattopadhyay D., Puthalath A.S., Nath U.K. Steroid toxicity in immune thrombocytopenia – a series of unfortunate events: a case report. Hematology 2023;11(1):60–8. DOI: 10.33590/emjhematol/10307003

15. Alakkas Z., Alzaedi O.A., Somannavar S.S. et al. Steroid-induced diabetes ketoacidosis in an immune thrombocytopenia patient: a case report and literature review. Am J Case Rep 2020;21:e923372. DOI: 10.12659/AJCR.923372

16. Sari D.A., Samodra G., Kusuma I.Y. Molecular mechanism of glucocorticoid-induced hyperglycemia. Pharm Rep 2021;1(1):1. DOI: 10.51511/pr.1

17. Yu S., Meng S., Xiang M. et al. Phosphoenolpyruvate carboxykinase in cell metabolism: roles and mechanisms beyond gluconeogenesis. Mol Metab 2021;53:101257. DOI: 10.1016/j.molmet.2021.101257

18. Boortz K.A., Syring K.E., Lee R.A. et al. G6PC2 modulates the effects of dexamethasone on fasting blood glucose and glucose tolerance. Endocrinology 2016;157(11):4133–45. DOI: 10.1210/en.2016-1678

19. Dimitriadis G., Leighton B., Parry-Billings M. et al. Effects of glucocorticoid excess on the sensitivity of glucose transport and metabolism to insulin in rat skeletal muscle. Biochem J 1997;321(3):707–12. DOI: 10.1042/bj3210707

20. Van Raalte D.H., Nofrate V., Bunck M.C. et al. Acute and 2-week exposure to prednisolone impair different aspects of β-cell function in healthy men. Eur J Endocrinol 2010;162(4):729–35. DOI: 10.1530/EJE-09-1034

21. Tariq H., Malik L.M., Azfar N.A. et al. Frequency of steroid induced hyperglycemia in patients with dermatological disorders. J Pak Assoc Dermatol 2018;28(1):69–72.

22. Gulliford M.C., Charlton J., Latinovic R. Risk of diabetes associated with prescribed glucocorticoids in a large population. Diabetes Care 2006;29(12):2728–9. DOI: 10.2337/dc06-1499

23. Campbell J.E., Peckett A.J., D’souza A.M. et al. Adipogenic and lipolytic effects of chronic glucocorticoid exposure. Am J PhysiolCell Physiol 2011;300(1):C198–209. DOI: 10.1152/ajpcell.00045.2010

24. Xu C., He J., Jiang H. et al. Direct effect of glucocorticoids on lipolysis in adipocytes. Mol Endocrinol 2009;23(8):1161–70. DOI: 10.1210/me.2008-0464

25. Brotman D.J., Girod J.P., Garcia M.J. et al. Effects of short-term glucocorticoids on cardiovascular biomarkers. J Clin Endocrinol Metab 2005;90(6):3202–8. DOI: 10.1210/jc.2004-2379

26. Buckley L., Humphrey M.B. Glucocorticoid-induced osteoporosis. N Engl J Med 2018;379(26):2547–56. DOI: 10.1056/NEJMcp1800214

27. Liu Y., Porta A., Peng X. et al. Prevention of glucocorticoid-induced apoptosis in osteocytes and osteoblasts by calbindin-D28k. J Bone Miner Res 2004;19(3):479–90. DOI: 10.1359/JBMR.0301242

28. De Vries F., Bracke M., Leufkens H.G.M. et al. Fracture risk with intermittent high-dose oral glucocorticoid therapy. Arthritis Rheum 2007;56(1):208–14. DOI: 10.1002/art.22294

29. Nicolaides N.C., Pavlaki A.N., Maria Alexandra M.A. et al. Glucocorticoid therapy and adrenal suppression. In: Endotext [Internet]. Eds.: K.R. Feingold, B. Anawalt, M.R. Blackman et al. South Dartmouth (MA): MDText.com, Inc., 2000. Available at: http://www.ncbi.nlm.nih.gov/books/NBK279156/.

30. Joseph R.M., Hunter A.L., Ray D.W. et al. Systemic glucocorticoid therapy and adrenal insufficiency in adults: a systematic review. Semin Arthritis Rheum 2016;46(1):133–41. DOI: 10.1016/j.semarthrit.2016.03.001

31. Mortimer K.J., Tata L.J., Smith C.J.P. et al. Oral and inhaled corticosteroids and adrenal insufficiency: a case-control study. Thorax 2006;61(5):405–8. DOI: 10.1136/thx.2005.052456

32. Chaudhry H.S., Singh G. Cushing syndrome. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2023. Available at: http://www.ncbi.nlm.nih.gov/books/NBK470218/.

33. Youssef J., Novosad S.A., Winthrop K.L. Infection risk and safety of corticosteroid use. Rheum Dis Clin North Am 2016;42(1):157. DOI: 10.1016/j.rdc.2015.08.004

34. Boumpas D.T., Chrousos G.P., Wilder R.L. et al. Glucocorticoid therapy for immune-mediated diseases: basic and clinical correlates. Ann Intern Med 1993;119(12):1198–208. DOI: 10.7326/0003-4819-119-12-199312150-00007

35. Wu J., Keeley A., Mallen C. et al. Incidence of infections associated with oral glucocorticoid dose in people diagnosed with polymyalgia rheumatica or giant cell arteritis: a cohort study in England. CMAJ 2019;191(25):E680–8. DOI: 10.1503/cmaj.190178

36. Hunter R.W., Ivy J.R., Bailey M.A. Glucocorticoids and renal Na+ transport: implications for hypertension and salt sensitivity. J Physiol 2014;592(Pt 8):1731–44. DOI: 10.1113/jphysiol.2013.267609

37. Brotman D.J., Girod J.P., Posch A. et al. Effects of short-term glucocorticoids on hemostatic factors in healthy volunteers. Thromb Res 2006;118(2):247–52. DOI: 10.1016/j.thromres.2005.06.006

38. Maxwell S.R.J., Moots R.J., Kendall M.J. Corticosteroids: do they damage the cardiovascular system? Postgrad Med J 1994;70(830):863–70. DOI: 10.1136/pgmj.70.830.863

39. Shinton R.A., Maxwell S.R.J., Sagar G. et al. Corticosteroids, hypertension and stroke: the West Birmingham Stroke Project. J Hypertens 1990;8(11):1063–4. DOI: 10.1097/00004872-199011000-00026

40. Schäcke H., Döcke W.D., Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 2002;96(1):23–43. DOI: 10.1016/s0163-7258(02)00297-8

41. Fardet L., Flahault A., Kettaneh A. et al. Corticosteroid-induced clinical adverse events: frequency, risk factors and patient’s opinion. Br J Dermatol 2007;157(1):142–8. DOI: 10.1111/j.1365-2133.2007.07950.x

42. Waljee A.K., Rogers M.A.M., Lin P. et al. Short term use of oral corticosteroids and related harms among adults in the United States: population based cohort study. BMJ 2017;357:j1415. DOI: 10.1136/bmj.j1415

43. Curtis J.R., Westfall A.O., Allison J. et al. Population-based assessment of adverse events associated with long-term glucocorticoid use. Arthritis Rheum 2006;55(3):420–6. DOI: 10.1002/art.21984

44. Pizzuto J., Ambriz R. Therapeutic experience on 934 adults with idiopathic thrombocytopenic purpura: multicentric trial of the Cooperative Latin American group on Hemostasis and Thrombosis. Blood 1984;64(6):1179–83. DOI: 10.1182/blood.V64.6.1179.1179

45. Kuter D.J. The treatment of immune thrombocytopenia (ITP) – focus on thrombopoietin receptor agonists. Ann Blood 2021;6(7):10–21037. DOI: 10.21037/aob-21-23

46. Imbach P., Crowther M. Thrombopoietin-receptor agonists for primary immune thrombocytopenia. N Engl J Med 2011;365(8):734–41. DOI: 10.1056/NEJMct1014202

47. Debili N., Wendling F., Cosman D. et al. The Mpl receptor is expressed in the megakaryocytic lineage from late progenitors to platelets. Blood 1995;85(2):391–401. DOI: 10.1182/blood.V85.2.391.391

48. Zauli G., Vitale M., Falcieri E. et al. In vitro senescence and apoptotic cell death of human megakaryocytes. Blood J Am Soc Hematol 1997;90(6):2234–43. DOI: 10.1182/blood.v90.6.2234

49. Al-Samkari H., Kuter D.J. Optimal use of thrombopoietin receptor agonists in immune thrombocytopenia. Ther Adv Hematol 2019;10:2040620719841735. DOI: 10.1177/2040620719841735

50. Солодовников А.Г., Сорокина Е.Ю., Морковин Е.И. Агонисты тромбопоэтиновых рецепторов: клиническое применение и оценка эффективности терапии. Ведомости Научного центра экспертизы средств медицинского применения 2020;10(4):236–43. Solodovnikov A.G., Sorokina E.Yu., Morkovin E.I. Thrombopoietin receptor agonists: clinical use and evaluation of treatment efficacy. Vedomosti Nauchnogo tsentra ekspertizy sredstv meditsinskogo primeneniya = Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products 2020;10(4): 236–43. (In Russ.).

51. Song A.B., Goodarzi K., Karp Leaf R. et al. Thrombopoietin level predicts response to treatment with romiplostim in chemotherapyinduced thrombocytopenia. Am J Hematol 2021;96(12):1563–8. DOI: 10.1002/ajh.26338

52. Kuter D.J., Bussel J.B., Newland A. et al. Long-term treatment with romiplostim in patients with chronic immune thrombocytopenia: safety and efficacy. Br J Haematol 2013;161(3):411–23. DOI: 10.1111/bjh.12260

53. Saleh M.N., Bussel J.B., Cheng G. et al. Safety and efficacy of eltrombopag for treatment of chronic immune thrombocytopenia: results of the long-term, open-label EXTEND study. Blood 2013;121(3):537–45. DOI: 10.1182/blood-2012-04-425512

54. Kuter D.J., Mathias S.D., Rummel M. et al. Health-related quality of life in nonsplenectomized immune thrombocytopenia patients receiving romiplostim or medical standard of care. Am J Hematol 2012;87(5):558–61. DOI: 10.1002/ajh.23163

55. Mageau A., Terriou L., Ebbo M. et al. Splenectomy for primary immune thrombocytopenia revisited in the era of thrombopoietin receptor agonists: new insights for an old treatment. Am J Hematol 2022;97(1):10–7. DOI: 10.1002/ajh.26378

56. Bussel J.B., Kuter D.J., Aledort L.M. et al. A randomized trial of avatrombopag, an investigational thrombopoietin-receptor agonist, in persistent and chronic immune thrombocytopenia. Blood J Am Soc Hematol 2014;123(25):3887–94. DOI: 10.1182/blood-2013-07-514398

57. Jurczak W., Chojnowski K., Mayer J. et al. Avatrombopag, a novel oral thrombopoietin receptor agonist, demonstrates superiority to placebo for the treatment of chronic immune thrombocytopenic purpura in a phase 3, multicenter, randomized, double-blind, placebo-controlled trial. Blood 2017;130:17. DOI: 10.1111/bjh.15573

58. Al‐Samkari H., Nagalla S. Efficacy and safety evaluation of avatrombopag in immune thrombocytopenia: analyses of a phase III study and long-term extension. Platelets 2022;33(2):257–64. DOI: 10.1080/09537104.2021.1881952

59. Al-Samkari H., Jiang D., Gernsheimer T. et al. Adults with immune thrombocytopenia who switched to avatrombopag following prior treatment with eltrombopag or romiplostim: a multicentre US study. Br J Haematol 2022;197(3):359–66. DOI: 10.1111/bjh.18081

60. Arai Y., Jo T., Matsui H. et al. Comparison of up-front treatments for newly diagnosed immune thrombocytopenia – a systematic review and network meta-analysis. Haematologica 2018;103(1):163–71. DOI: 10.3324/haematol.2017.174615


Review

For citations:


Zakharov S.G., Mitina T.A., Zakharova A.V., Vardanyan R.V., Kataeva E.V., Chernykh Yu.B., Vysotskaya L.L., Ivanitskiy L.V., Kontievskiy I.N., Madzyara O.P., Zhuravlev O.R., Gorgun N.V., Kharasova Z.M. Glucocorticosteroid-induced complications in patients with idiopathic thrombocytopenic purpura. Oncohematology. 2023;18(4):233-243. (In Russ.) https://doi.org/10.17650/1818-8346-2023-18-4-233-243

Views: 2635


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)