Preview

Oncohematology

Advanced search

Functional features of natural killer cells in acute myeloid leukemia

https://doi.org/10.17650/1818-8346-2023-18-4-163-171

Abstract

Natural killer cells are a key component of the innate immune system in the fight against tumors. However, in acute myeloid leukemia there is a decrease in the functional activity of these cells. Their activity is under constant control of one or more inhibitory receptors and depends on the balance of inhibitory receptors activation and activating receptors stimulation. This review examines the key inhibitory and activating receptors of natural killer cells and summarizes literature data describing changes in their expression in patients with acute myeloid leukemia.

About the Authors

K. A. Nikiforova
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

Ksenia A. Nikiforova 

4 Novyy Zykovskiy Proezd, Moscow 125167



I. V. Galtseva
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

4 Novyy Zykovskiy Proezd, Moscow 125167



E. N. Parovichnikova
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

4 Novyy Zykovskiy Proezd, Moscow 125167



References

1. Costello R.T., Fauriat C., Sivori S. et al. NK cells: innate immunity against hematological malignancies? Trends Immunol 2004;25(6):328–33. DOI: 10.1016/j.it.2004.04.005

2. Abel A.M., Yang C., Thakar M.S. et al. Natural killer cells: development, maturation, and clinical utilization. Front Immunol 2018;9:1869. DOI: 10.3389/fimmu.2018.01869

3. Crinier A., Dumas P.Y., Escalière B. et al. Single-cell profiling reveals the trajectories of natural killer cell differentiation in bone marrow and a stress signature induced by acute myeloid leukemia. Cell Mol Immunol 2021;18(5):1290–304. DOI: 10.1038/s41423-020-00574-8

4. Mace E.M. Human natural killer cells: form, function, and development. J Allergy Clin Immunol 2023;151(2):371–85. DOI: 10.1016/j.jaci.2022.09.022

5. Freud A.G., Yokohama A., Becknell B. et al. Evidence for discrete stages of human natural killer cell differentiation in vivo. J Exp Med 2006;203(4):1033–43. DOI: 10.1084/jem.20052507

6. Farag S.S., Caligiuri M.A. Human natural killer cell development and biology. Blood Rev 2006;20(3):123–37. DOI: 10.1016/j.blre.2005.10.001

7. Srpan K., Ambrose A., Karampatzakis A. et al. Shedding of CD16 disassembles the NK cell immune synapse and boosts serial engagement of target cells. J Cell Biol 2018;217(9):3267–83. DOI: 10.1083/jcb.201712085

8. Van Acker H.H., Capsomidis A., Smits E.L. et al. CD56 in the immune system: more than a marker for cytotoxicity? Front Immunol 2017;8:892. DOI: 10.3389/fimmu.2017.00892

9. Ziegler S., Weiss E., Schmitt A.L. et al. CD56 is a pathogen recognition receptor on human natural killer cells. Sci Rep 2017;7(1):6138. DOI: 10.1038/s41598-017-06238-4

10. Gunesch J.T., Dixon A.L., Ebrahim T.A. et al. CD56 regulates human NK cell cytotoxicity through Pyk2. Elife 2020;9:e57346. DOI: 10.7554/eLife.57346

11. Picard L.K., Claus M., Fasbender F. et al. Human NK cells responses are enhanced by CD56 engagement. Eur J Immunol 2022;52(9):1441–51. DOI: 10.1002/eji.202249868

12. Chretien A.S., Fauriat C., Orlanducci F. et al. Natural killer defective maturation is associated with adverse clinical outcome in patients with acute myeloid leukemia. Front Immunol 2017;8:573. DOI: 10.3389/fimmu.2017.00573

13. Wilk A.J., Blish C.A. Diversification of human NK cells: lessons from deep profiling. J Leukoc Biol 2018;103(4):629–41. DOI: 10.1002/JLB.6RI0917-390R

14. Müller-Durovic B., Grählert J., Devine O.P. et al. CD56-negative NK cells with impaired effector function expand in CMV and EBV co-infected healthy donors with age. Aging (Albany NY) 2019;11(2):724–40. DOI: 10.18632/aging.101774

15. Mavilio D., Lombardo G., Benjamin J. et al. Characterization of CD56-/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc Natl Acad Sci USA 2005;102(8):2886–91. DOI: 10.1073/pnas.0409872102

16. Caduff N., McHugh D., Rieble L. et al. KSHV infection drives poorly cytotoxic CD56-negative natural killer cell differentiation in vivo upon KSHV/EBV dual infection. Cell Rep 2021;35(5):109056. DOI: 10.1016/j.celrep.2021.109056

17. Gayoso I., Sanchez-Correa B., Campos C. et al. Immunosenescence of human natural killer cells. J Innate Immun 2011;3(4):337–43. DOI: 10.1159/000328005

18. Campos C., Pera A., Sanchez-Correa B. et al. Effect of age and CMV on NK cell subpopulations. Exp Gerontol 2014;54:130–7. DOI: 10.1016/j.exger.2014.01.008

19. Hazeldine J., Lord J.M. The impact of ageing on natural killer cell function and potential consequences for health in older adults. Ageing Res Rev 2013;12(4):1069–78. DOI: 10.1016/j.arr.2013.04.003

20. Fauriat C., Just-Landi S., Mallet F. et al. Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood 2007;109(1):323–30. DOI: 10.1182/blood-2005-08-027979

21. Szczepanski M.J., Szajnik M., Welsh A. et al. Interleukin-15 enhances natural killer cell cytotoxicity in patients with acute myeloid leukemia by upregulating the activating NK cell receptors. Cancer Immunol Immunother 2010;59(1):73–9. DOI: 10.1007/s00262-009-0724-5

22. Lichtenegger F.S., Lorenz R., Gellhaus K. et al. Impaired NK cells and increased T regulatory cell numbers during cytotoxic maintenance therapy in AML. Leuk Res 2014;38(8):964–9. DOI: 10.1016/j.leukres.2014.05.014

23. Chretien A.S., Granjeaud S., Gondois-Rey F. et al. Increased NK cell maturation in patients with acute myeloid leukemia. Front Immunol 2015;6:564. DOI: 10.3389/fimmu.2015.00564

24. Rey J., Fauriat C., Kochbati E. et al. Kinetics of cytotoxic lymphocytes reconstitution after induction chemotherapy in elderly AML patients reveals progressive recovery of normal phenotypic and functional features in NK cells. Front Immunol 2017;8:64. DOI: 10.3389/fimmu.2017.00064

25. Aggarwal N., Swerdlow S.H., TenEyck S.P. et al. Natural killer cell (NK) subsets and NK-like T-cell populations in acute myeloid leukemias and myelodysplastic syndromes. Cytometry B Clin Cytom 2016;90(4):349–57. DOI: 10.1002/cyto.b.21349

26. Sanchez C.J., Le Treut T., Boehrer A. et al. Natural killer cells and malignant haemopathies: a model for the interaction of cancer with innate immunity. Cancer Immunol Immunother 2011;60(1):1–13. DOI: 10.1007/s00262-010-0898-x

27. Verheyden S., Bernier M., Demanet C. Identification of natural killer cell receptor phenotypes associated with leukemia. Leukemia 2004;18(12):2002–7. DOI: 10.1038/sj.leu.2403525

28. Verheyden S., Demanet C. Susceptibility to myeloid and lymphoid leukemia is mediated by distinct inhibitory KIR-HLA ligand interactions. Leukemia 2006;20(8):1437–8. DOI: 10.1038/sj.leu.2404279

29. Ruggeri L., Mancusi A., Capanni M. et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood 2007;110(1):433–40. DOI: 10.1182/blood-2006-07-038687

30. Curti A., Ruggeri L., D’Addio A. et al. Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood 2011;118(12):3273–9. DOI: 10.1182/blood-2011-01-329508

31. Konova Z.V., Parovichnikova E.N., Galtseva I.V. et al. Influence of killer immunoglobulin-like receptor genes of natural killer cells and their HLA ligands on the results of allogeneic hematopoietic stem cells transplantation. Gematologiya i transfuziologiya = Hematology and Transfusiology 2022;67(4):551–69. (In Russ.). DOI: 10.35754/0234-5730-2022-67-4-551-569

32. Ruggeri L., Mancusi A., Capanni M. et al. Exploitation of alloreactive NK cells in adoptive immunotherapy of cancer. Curr Opin Immunol 2005;17(2):211–7. DOI: 10.1016/j.coi.2005.01.007

33. Borrego F., Masilamani M., Marusina A.I. et al. The CD94/NKG2 family of receptors: from molecules and cells to clinical relevance. Immunol Res 2006;35(3):263–78. DOI: 10.1385/IR:35:3:263

34. Nguyen S., Dhedin N., Vernant J.P. et al. NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations: immaturity of NK cells and inhibitory effect of NKG2A override GvL effect. Blood 2005;105(10):4135–42. DOI: 10.1182/blood-2004-10-4113

35. Stringaris K., Sekine T., Khoder A. et al. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia. Haematologica 2014;99(5):836–47. DOI: 10.3324/haematol.2013.087536

36. Wu Z., Zhang H., Wu M. et al. Targeting the NKG2D/NKG2D-L axis in acute myeloid leukemia. Biomed Pharmacother 2021;137:111299. DOI: 10.1016/j.biopha.2021.111299

37. Raulet D.H., Gasser S., Gowen B.G. et al. Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol 2013;31: 413–41. DOI: 10.1146/annurev-immunol-032712-095951

38. Horton N.C., Mathew P.A. NKp44 and natural cytotoxicity receptors as damage-associated molecular pattern recognition receptors. Front Immunol 2015;6:31. DOI: 10.3389/fimmu.2015.00031

39. Koch J., Steinle A., Watzl C. et al. Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends Immunol 2013;34(4):182–91. DOI: 10.1016/j.it.2013.01.003

40. Costello R.T., Sivori S., Marcenaro E. et al. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 2002;99(10):3661–7. DOI: 10.1182/blood.v99.10.3661

41. Sanchez-Correa B., Morgado S., Gayoso I. et al. Human NK cells in acute myeloid leukaemia patients: analysis of NK cell-activating receptors and their ligands. Cancer Immunol Immunother 2011;60(8):195–205. DOI: 10.1007/s00262-011-1050-2

42. Sivori S., Pende D., Bottino C. et al. NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells. Eur J Immunol 1999;29(5):1656–66. DOI: 10.1002/(SICI)1521-4141(199905)29:053.0.CO;2-1

43. Pende D., Parolini S., Pessino A. et al. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med 1999;190(10):1505–16. DOI: 10.1084/jem.190.10.1505

44. Khaznadar Z., Boissel N., Agaugué S. et al. Defective NK cells in acute myeloid leukemia patients at diagnosis are associated with blast transcriptional signatures of immune evasion. J Immunol 2015;195(6):2580–90. DOI: 10.4049/jimmunol.1500262

45. Chretien A.S., Fauriat C., Orlanducci F. et al. NKp30 expression s a prognostic immune biomarker for stratification of patients with intermediate-risk acute myeloid leukemia. Oncotarget 2017;8(30):49548–63. DOI: 10.18632/oncotarget.17747

46. Chretien A.S., Devillier R., Fauriat C. et al. NKp46 expression on NK cells as a prognostic and predictive biomarker for response to allo-SCT in patients with AML. Oncoimmunology 2017;6(12):e1307491. DOI: 10.1080/2162402X.2017.1307491

47. Sanchez-Correa B., Gayoso I., Bergua J.M. et al. Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol Cell Biol 2012;90(1):109–15. DOI: 10.1038/icb.2011.15

48. Bottino C., Castriconi R., Pende D. et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 2003;198(4):557–67. DOI: 10.1084/jem.20030788

49. Pende D., Bottino C., Castriconi R. et al. PVR (CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis. Mol Immunol 2005;42(4):463–9. DOI: 10.1016/j.molimm.2004.07.028

50. Almeida-Oliveira A., Smith-Carvalho M., Porto L.C. et al. Agerelated changes in natural killer cell receptors from childhood through old age. Hum Immunol 2011;72(4):319–29. DOI: 10.1016/j.humimm.2011.01.009

51. Myers J.A., Schirm D., Bendzick L. et al. Balanced engagement of activating and inhibitory receptors mitigates human NK cell exhaustion. JCI Insight 2022;7(15):e150079. DOI: 10.1172/jci.insight.150079

52. Pende D., Spaggiari G.M., Marcenaro S. et al. Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 2005;105(5):2066–73. DOI: 10.1182/blood-2004-09-3548

53. Nowbakht P., Ionescu M.C., Rohner A. et al. Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood 2005;105(9):3615–22. DOI: 10.1182/blood-2004-07-2585

54. Salih H.R., Antropius H., Gieseke F. et al. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 2003;102(4):1389–96. DOI: 10.1182/blood-2003-01-0019

55. Paczulla A.M., Rothfelder K., Raffel S. et al. Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature 2019;572(7768):254–9. DOI: 10.1038/s41586-019-1410-1

56. Mastaglio S., Wong E., Perera T. et al. Natural killer receptor ligand expression on acute myeloid leukemia impacts survival and relapse after chemotherapy. Blood Adv 2018;2(4):335–46. DOI: 10.1182/bloodadvances.2017015230

57. Miller J.S., Soignier Y., Panoskaltsis-Mortari A. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005;105(8):3051–7. DOI: 0.1182/blood-2004-07-2974

58. Rubnitz J.E., Inaba H., Ribeiro R.C. et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol 2010;28(6):955. DOI: 10.1200/JCO.2009.24.4590

59. Shaffer B.C., Le Luduec J.B., Forlenza C. et al. Phase II study of haploidentical natural killer cell infusion for treatment of relapsed or persistent myeloid malignancies following allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2016;22(4):705–9. DOI: 10.1016/j.bbmt.2015.12.028

60. Liu E., Marin D., Banerjee P. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med 2020;382(6):545–53. DOI: 10.1056/NEJMoa1910607

61. Chu J., Deng Y., Benson D.M. et al. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia 2014;8(4):917–27. DOI: 10.1038/leu.2013.279


Review

For citations:


Nikiforova K.A., Galtseva I.V., Parovichnikova E.N. Functional features of natural killer cells in acute myeloid leukemia. Oncohematology. 2023;18(4):163-171. (In Russ.) https://doi.org/10.17650/1818-8346-2023-18-4-163-171

Views: 2621


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)