Подходы к диагностике и терапии H3K27M-измененных диффузных срединных глиом у детей: обзор литературы
https://doi.org/10.17650/1818-8346-2023-18-4-104-114
Аннотация
H3K27M-измененные диффузные срединные глиомы представляют собой наиболее агрессивный тип глиом детского возраста. эти опухоли характеризуются поражением срединных структур центральной нервной системы, диффузным инфильтративным ростом и фатальным прогнозом. В основе патогенеза H3K27M-измененных диффузных срединных глиом лежат уникальные эпигенетические и генетические изменения, ассоциированные с альтерациями вариантов гистона 3 (H3). клиническая картина неспецифична, что может затруднять своевременную постановку диагноза и определяет высокую частоту распространенных форм заболевания. В диагностике данного типа глиом используется нейровизуализация, а также различные методы лабораторной и молекулярной диагностики, включая высокопроизводительное секвенирование, что позволяет оценить наличие потенциальных мишеней для направленной терапии. Несмотря на доступность противоопухолевых технологий, включая таргетную и иммунотерапию, стандартом лечения H3K27M-измененных диффузных срединных глиом остается лучевая терапия, которая не позволяет достигать длительной бессобытийной выживаемости. Неблагоприятный прогноз и ограниченность куративных опций данного типа опухоли обусловливают необходимость поиска новых методов лечения, способных увеличить выживаемость пациентов этой группы. В статье представлены современные данные мировой литературы по диагностике и трендам в лечении H3K27M-измененных диффузных срединных глиом у детей.
Ключевые слова
Об авторах
Д. А. МоргачеваРоссия
Дарья Андреевна Моргачева
197341 Санкт-Петербург, ул. Аккуратова, 2
Д. А. Ситовская
Россия
191014 Санкт- Петербург, ул. Маяковского, 12
Ю. В. Диникина
Россия
197341 Санкт-Петербург, ул. Аккуратова, 2
Список литературы
1. Fangusaro J. Pediatric high grade glioma: a review and update on tumor clinical characteristics and biology. Front Oncol 2012;2:105. DOI: 10.3389/fonc.2012.00105
2. Mackay A., Burford A., Carvalho D. et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 2017;32(4):520–37.e5. DOI: 10.1016/j.ccell.2017.08.017
3. Ostrom Q.T., Gittleman H., Fulop J. et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol 2015;17(Suppl. 4): iv1–62. DOI: 10.1093/neuonc/nov189
4. Louis D.N., Perry A., Wesseling P. et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 2021;23(8):1231–51. DOI: 10.1093/neuonc/noab106
5. Louis D.N., Perry A., Reifenberger G. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131(6):803–20. DOI: 10.1007/s00401-016-1545-1
6. Aboian M.S., Solomon D.A., Felton E. et al. Imaging characteristics of pediatric diffuse midline gliomas with histone H3 K27M mutation. AJNR Am J Neuroradiol 2017;38(4):795–800. DOI: 10.3174/ajnr.A5076
7. Mosaab A., El-Ayadi M., Khorshed E.N. et al. Histone H3K27M mutation overrides histological grading in pediatric gliomas. Sci Rep 2020;10(1):8368. DOI: 10.1038/s41598-020-65272-x
8. Shi L., Wen H., Shi X. The histone variant H3.3 in transcriptional regulation and human disease. J Mol Biol 2017;429(13):1934–45. DOI: 10.1016/j.jmb.2016.11.019
9. Argersinger D.P., Rivas S.R., Shah A.H. et al. New developments in the pathogenesis, therapeutic targeting, and treatment of H3K27M-mutant diffuse midline glioma. Cancers (Basel) 2021;13(21):5280. DOI: 10.3390/cancers13215280
10. Krug B., De Jay N., Harutyunyan A.S. et al. Pervasive H3K27 acetylation leads to ERV expression and a therapeutic vulnerability in H3K27M gliomas. Cancer Cell 2019;36(3):338–9. DOI: 10.1016/j.ccell.2019.08.012
11. Sievers P., Sill M., Schrimpf D. et al. A subset of pediatric-type thalamic gliomas share a distinct DNA methylation profile, H3K27me3 loss and frequent alteration of EGFR. Neuro Oncol 2021;23(1):34–43. DOI: 10.1093/neuonc/noaa251
12. Durno C., Ercan A.B., Bianchi V. et al. Survival benefit for individuals with constitutional mismatch repair deficiency undergoing surveillance. J Clin Oncol 2021;39(25):2779–90. DOI: 10.1200/JCO.20.02636
13. Deng M.Y., Sturm D., Pfaff E. et al. Radiation-induced gliomas represent H3-/IDH-wild type pediatric gliomas with recurrent PDGFRA amplification and loss of CDKN2A/B. Nat Commun 2021;12(1):5530. DOI: 10.1038/s41467-021-25708-y
14. Rao S., Sahay A., Epari S. Paediatric type diffuse high grade gliomas in the WHO CNS5 classification: what the pathologist needs to know? Indian J Pathol Microbiol 2022;65(Suppl):S50–8. DOI: 10.4103/ijpm.ijpm_1202_21
15. Zheng L., Gong J., Yu T. et al. Diffuse midline gliomas with histone H3 K27M mutation in adults and children: a retrospective series of 164 cases. Am J Surg Pathol 2022;46(6):863–71. DOI: 10.1097/PAS.0000000000001897
16. Johung T.B., Monje M. Diffuse intrinsic pontine glioma: new pathophysiological insights and emerging therapeutic targets. Curr Neuropharmacol 2017;15(1):88–97. DOI: 10.2174/1570159x14666160509123229
17. Esquenazi Y., Moss N., Tabar V. In reply: thalamic glioblastoma: clinical presentation, management strategies, and outcomes. Neurosurgery 2019;84(5):E289–90. DOI: 10.1093/neuros/nyz010
18. Hoffman L.M., Veldhuijzen van Zanten S.E.M., Colditz N. et al. Clinical, radiologic, pathologic, and molecular characteristics of long-term survivors of diffuse intrinsic pontine glioma (DIPG): a collaborative report from the international and European Society for Pediatric Oncology DIPG Registries. J Clin Oncol 2018;36(19):1963–72. DOI: 10.1200/JCO.2017.75.9308
19. Tisnado J., Young R., Peck K.K. et al. Conventional and advanced imaging of diffuse intrinsic pontine glioma. J Child Neurol 2016;31(12):1386–93. DOI: 10.1177/0883073816634855
20. Leach J.L., Roebker J., Schafer A. et al. MR imaging features of diffuse intrinsic pontine glioma and relationship to overall survival: report from the International DIPG Registry. Neuro Oncol 2020;22(11):1647–57. DOI: 10.1093/neuonc/noaa140
21. Lovibond S., Gewirtz A.N., Pasquini L. et al. The promise of metabolic imaging in diffuse midline glioma. Neoplasia 2023;39:100896. DOI: 10.1016/j.neo.2023.100896
22. Navarro R.E., Golub D., Hill T. et al. Pediatric midline H3K27Mmutant tumor with disseminated leptomeningeal disease and glioneuronal features: case report and literature review. Childs Nerv Syst 2021;37(7):2347–56. DOI: 10.1007/s00381-020-04892-0
23. Kurokawa R., Kurokawa M., Baba A. et al. Dynamic susceptibility contrast-MRI parameters, ADC values, and the T2-FLAIR mismatch sign are useful to differentiate between H3-mutant and H3-wild-type high-grade midline glioma. Eur Radiol 2022;32(6):3672–82. DOI: 10.1007/s00330-021-08476-7
24. Demetriades A.K., Almeida A.C., Bhangoo R.S. et al. Applications of positron emission tomography in neuro-oncology: a clinical approach. Surgeon 2014;12(3):148–57. DOI: 10.1016/j.surge.2013.12.001
25. Falk Delgado A., Falk Delgado A. Discrimination between primary low-grade and high-grade glioma with (11)C-methionine PET: a bivariate diagnostic test accuracy meta-analysis. Br J Radiol 2018;91(1082):20170426. DOI: 10.1259/bjr.20170426
26. Cui M., Zorrilla-Veloz R.I., Hu J. et al. Diagnostic accuracy of PET for differentiating true glioma progression from post treatmentrelated changes: a systematic review and meta-analysis. Front Neurol 2021;12:671867. DOI: 10.3389/fneur.2021.671867
27. Hamisch C., Kickingereder P., Fischer M. et al. Update on the diagnostic value and safety of stereotactic biopsy for pediatric brainstem tumors: a systematic review and meta-analysis of 735 cases. J Neurosurg Pediatr 2017;20(3):261–8. DOI: 10.3171/2017.2.PEDS1665
28. Dawes W., Marcus H.J., Tisdall M. et al. Robot-assisted stereotactic brainstem biopsy in children: prospective cohort study. J Robot Surg 2019;13(4):575–9. DOI: 10.1007/s11701-018-0899-x
29. Pfaff E., El Damaty A., Balasubramanian G.P. et al. Brainstem biopsy in pediatric diffuse intrinsic pontine glioma in the era of precision medicine: the INFORM study experience. Eur J Cancer 2019;114:27–35. DOI: 10.1016/j.ejca.2019.03.019
30. Bechet D., Gielen G.G., Korshunov A. et al. Specific detection of methionine 27 mutation in histone 3 variants (H3K27M) in fixed tissue from high-grade astrocytomas. Acta Neuropathol 2014;128(5):733–41. DOI: 10.1007/s00401-014-1337-4
31. Zhao H., Fang X., Xue B. Four methods to analyze H3K27M mutation in diffuse midline gliomas. Pathol Res Pract 2020;216(9):153065. DOI: 10.1016/j.prp.2020.153065
32. Huang T., Garcia R., Qi J. et al. Detection of histone H3 K27M mutation and post-translational modifications in pediatric diffuse midline glioma via tissue immunohistochemistry informs diagnosis and clinical outcomes. Oncotarget 2018;9(98):37112–24. DOI: 10.18632/oncotarget.26430
33. Gojo J., Pavelka Z., Zapletalova D. et al. Personalized treatment of H3K27M-mutant pediatric diffuse gliomas provides improved therapeutic opportunities. Front Oncol 2019;9:1436. DOI: 10.3389/fonc.2019.01436
34. Panditharatna E., Kilburn L.B., Aboian M.S. et al. Clinically Relevant and minimally invasive tumor surveillance of pediatric diffuse midline gliomas using patient-derived liquid biopsy. Clin Cancer Res 2018;24(23):5850–9. DOI: 10.1158/1078-0432.CCR-18-1345
35. Mueller S., Jain P., Liang W.S. et al. A pilot precision medicine trial for children with diffuse intrinsic pontine glioma-PNOC003: a report from the Pacific Pediatric Neuro-Oncology Consortium. Int J Cancer 2019;145(7):1889–901. DOI: 10.1002/ijc.32258
36. Hegi M.E., Diserens A.C., Gorlia T. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352(10):997–1003. DOI: 10.1056/NEJMoa043331
37. Cohen K.J., Pollack I.F., Zhou T. et al. Temozolomide in the treatment of high-grade gliomas in children: a report from the Children’s Oncology Group. Neuro Oncol 2011;13(3):317–23. DOI: 10.1093/neuonc/noq191
38. Grimm S.A., Chamberlain M.C. Brainstem glioma: a review. Curr Neurol Neurosci Rep 2013;13(5):346. DOI: 10.1007/s11910-013-0346-3
39. Vanan M.I., Eisenstat D.D. DIPG in children – what can we learn from the past? Front Oncol 2015;5:237. DOI: 10.3389/fonc.2015.00237
40. Frazier J.L., Lee J., Thomale U.W. et al. Treatment of diffuse intrinsic brainstem gliomas: failed approaches and future strategies. J Neurosurg Pediatr 2009;3(4):259–69. DOI: 10.3171/2008.11.PEDS08281
41. El-Khouly F.E., Veldhuijzen van Zanten S.E.M., Jansen M.H.A. et al. A phase I/II study of bevacizumab, irinotecan and erlotinib in children with progressive diffuse intrinsic pontine glioma. J Neurooncol 2021;153(2):263–71. DOI: 10.1007/s11060-021-03763-1
42. Perwein T., Giese B., Nussbaumer G. et al. How I treat recurrent pediatric high-grade glioma (pHGG): a Europe-wide survey study. J Neurooncol 2023;161(3):525–38. DOI: 10.1007/s11060-023-04241-6
43. Su J.M., Kilburn L.B., Mansur D.B. et al. Phase I/II trial of vorinostat and radiation and maintenance vorinostat in children with diffuse intrinsic pontine glioma: a Children’s Oncology Group report. Neuro Oncol 2022;24(4):655–64. DOI: 10.1093/neuonc/noab188
44. Su J.M., Murray J.C., McNall-Knapp R.Y. et al. A phase 2 study of valproic acid and radiation, followed by maintenance valproic acid and bevacizumab in children with newly diagnosed diffuse intrinsic pontine glioma or high-grade glioma. Pediatr Blood Cancer 2020;67(6):e28283. DOI: 10.1002/pbc.28283
45. Fisher J.P., Adamson D.C. Current FDA-approved therapies for high-grade malignant gliomas. Biomedicines 2021;9(3):324. DOI: 10.3390/biomedicines9030324
46. Evans M., Gill R., Bull K.S. Does a bevacizumab-based regime have a role in the treatment of children with diffuse intrinsic pontine glioma? A systematic review. Neurooncol Adv 2022;4(1):vdac100. DOI: 10.1093/noajnl/vdac100
47. Gardner S.L., Tarapore R.S., Allen J. et al. Phase I dose escalation and expansion trial of single agent ONC201 in pediatric diffuse midline gliomas following radiotherapy. Neurooncol Adv 2022;4(1):vdac143. DOI: 10.1093/noajnl/vdac143
48. Chi A.S., Tarapore R.S., Hall M.D. et al. Pediatric and adult H3 K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201. J Neurooncol 2019;145(1):97–105. DOI: 10.1007/s11060-019-03271-3
49. Pachocki C.J., Hol E.M. Current perspectives on diffuse midline glioma and a different role for the immune microenvironment compared to glioblastoma. J Neuroinflammation 2022;19(1):276. DOI: 10.1186/s12974-022-02630-8
50. Persson M.L., Douglas A.M., Alvaro F. et al. The intrinsic and microenvironmental features of diffuse midline glioma: Implications for the development of effective immunotherapeutic treatment strategies. Neuro Oncol 2022;24(9):1408–22. DOI: 10.1093/neuonc/noac117
51. Majzner R.G., Ramakrishna S., Yeom K.W. et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 2022;603(7903):934–41. DOI: 10.1038/s41586-022-04489-4
52. Crawford J., Saria M.G., Dhall G. et al. Feasibility of treating high grade gliomas in children with tumor-treating fields: a case series. Cureus 2020;12(10):e10804. DOI: 10.7759/cureus.10804
53. Goldman S., Margol A., Hwang E.I. et al. Safety of Tumor Treating Fields (TTFields) therapy in pediatric patients with malignant brain tumors: Post-marketing surveillance data. Front Oncol 2022;12:958637. DOI: 10.3389/fonc.2022.958637
54. Himes B.T., Zhang L., Daniels D.J. Treatment strategies in diffuse midline gliomas with the H3K27M mutation: the role of convection-enhanced delivery in overcoming anatomic challenges. Front Oncol 2019;9:31. DOI: 10.3389/fonc.2019.00031
55. Parekh K., LeBlang S., Nazarian J. et al. Past, present and future of Focused Ultrasound as an adjunct or complement to DIPG/ DMG therapy: a consensus of the 2021 FUSF DIPG meeting. Neoplasia 2023;37:100876. DOI: 10.1016/j.neo.2023.100876
56. Englander Z.K., Wei H.J., Pouliopoulos A.N. et al. Focused ultrasound mediated blood-brain barrier opening is safe and feasible in a murine pontine glioma model. Sci Rep 2021;11(1):6521. DOI: 10.1038/s41598-021-85180-y
57. Clinical Trials. gov. 2023, May 23. Available at: https://clinicaltrials.gov/ct2/results?cond=H3+K27M&Search=Apply&recrs=b&recrs=a&recrs=d&age_v=&gndr=&type=&rslt=.
Рецензия
Для цитирования:
Моргачева Д.А., Ситовская Д.А., Диникина Ю.В. Подходы к диагностике и терапии H3K27M-измененных диффузных срединных глиом у детей: обзор литературы. Онкогематология. 2023;18(4):104-114. https://doi.org/10.17650/1818-8346-2023-18-4-104-114
For citation:
Morgacheva D.A., Sitovskaia D.A., Dinikina Yu.V. Diagnostic and therapeutical approaches to H3K27M-altered diffuse midline glioma in children: a review. Oncohematology. 2023;18(4):104-114. (In Russ.) https://doi.org/10.17650/1818-8346-2023-18-4-104-114