Preview

Онкогематология

Расширенный поиск

Минорные антигены гистосовместимости, представляемые в HLA-А*02:01, и стратегии их поиска

https://doi.org/10.17650/1818-8346-2023-18-3-115-124

Аннотация

   Минорные антигены гистосовместимости (МАГ) – полиморфные пептиды на поверхности клеток, представляющие собой фрагменты собственных белков организма, которые способны вызывать иммунный ответ при аллогенной трансплантации гемопоэтических стволовых клеток. Их презентация на поверхности клетки обусловлена присутствием определенных аллелей главного комплекса гистосовместимости (HLA – human leucocyte antigen). Одним из самых распространенных аллелей HLA является HLA-A*02:01. Соответственно, для значительного количества пар доноров и реципиентов возможно использование МАГ, представляемых в HLA-A*02:01, в качестве мишени при направленной терапии рецидивов лейкозов. В обзоре обсуждаются основные из известных МАГ, презентируемых в контексте HLA-A*02:01, их характеристики и подходы, использованные для идентификации. Описанные подходы могут применяться для поиска новых МАГ в контексте мишеней для иммунотерапии.

Об авторах

Д. С. Романюк
ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России
Россия

125167

Новый Зыковский пр-д, 4

Москва



А. М. Пилунов
ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России
Россия

125167

Новый Зыковский пр-д, 4

Москва



Г. А. Ефимов
Милтени Биотек ГмбХ
Германия

51429

ул. Фридрих-Элберт, 68

Бергиш-Гладбах



А. В. Боголюбова
ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России
Россия

Аполлинария Васильевна Боголюбова 

125167

Новый Зыковский пр-д, 4

Москва



Е. Н. Паровичникова
ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России
Россия

125167

Новый Зыковский пр-д, 4

Москва



Список литературы

1. Dausset J. Iso-leuco-anticorps. Acta Haematol 1958;20(1–4): 156–66. DOI: 10.1159/000205478

2. Ефимов Г.А., Вдовин А.С., Григорьев А.А. и др. Иммунобиология острой реакции «трансплантат против хозяина». Медицинская иммунология 2015;17(6):499–516. DOI: 10.15789/1563-0625-2015-6-499-516

3. Rötzschke O., Falk K., Wallny H. et al. Characterization of naturally occurring minor histocompatibility peptides including H-4 and H-Y. Science 1990;249(4966):283–7. DOI: 10.1126/science.1695760

4. Townsend A.R.M., Rothbard J., Gotch F.M. et al. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 1986;44(6): 959–68. DOI: 10.1016/0092-8674(86)90019-x

5. Snell G. Methods for the study of histocompatibility genes. J Genet 1948;49(2):87–108. DOI: 10.1007/BF02986826

6. Counce S., Smith P., Barth R., Snell G.D. Strong and weak histocompatibility gene differences in mice and their role in the rejection of homografts of tumors and skin. Ann Surg 1956;144(2):198–204. DOI: 10.1097/00000658-195608000-00009

7. Goulmy E. Minor histocompatibility antigens in man and their role in transplantation. Transplant Rev 1988;2:29–53. DOI: 10.1016/s0955-470x(88)80005-3

8. Bjorkman P., Saper M., Samraoui B. et al. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987;329(6139):506–12. DOI: 10.1038/329506a0

9. Bjorkman P., Saper M., Samraoui B. et al. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 1987;329(6139):512–8. DOI: 10.1038/329512a0

10. Bassani-Sternberg M., Chong C., Guillaume P. et al. Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity. PLoS Comput Biol 2017;13(8):e1005725. DOI: 10.1371/journal.pcbi.1005725

11. González-Galarza F.F., Takeshita L., Santos E. et al. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res 2015;43:D784–8. DOI: 10.1093/nar/gku1166

12. Griffioen M., van Bergen C.A.M., Falkenburg J.H.F. Autosomal minor histocompatibility antigens: how genetic variants create diversity in immune targets. Front Immunol 2016;7:100. DOI: 10.3389/fimmu.2016.00100

13. Oostvogels R., Kneppers E., Minnema M. et al. Efficacy of hostdendritic cell vaccinations with or without minor histocompatibility antigen loading, combined with donor lymphocyte infusion in multiple myeloma patients. Bone Marrow Transplant 2016;52(2):228–37. DOI: 10.1038/bmt.2016.250

14. Meij P., Jedema I., van der Hoorn M. et al. Generation and administration of HA-1-specific T-cell lines for the treatment of patients with relapsed leukemia after allogeneic stem cell transplantation: a pilot study. Haematologica 2012;97(8):1205–8. DOI: 10.3324/haematol.2011.053371

15. De Rijke B., van Horssen-Zoetbrood A., Beekman J.M. et al. A frameshift polymorphism in P2X5 elicits an allogeneic cytotoxic T lymphocyte response associated with remission of chronic myeloid leukemia. J Clin Invest 2005;115(12):3506–16. DOI: 10.1172/jci24832

16. Spierings E., Brickner A.G., Caldwell J.A. et al. The minor histocompatibility antigen HA-3 arises from differential proteasomemediated cleavage of the lymphoid blast crisis (Lbc) oncoprotein. Blood 2003;102(2):621–9. DOI: 10.1182/blood-2003-01-0260

17. Brickner A.G., Warren E.H., Caldwell J.A. et al. The immunogenicity of a new human minor histocompatibility antigen results from differential antigen processing. J Exp Medicine 2001;193(2):195–206. DOI: 10.1084/jem.193.2.195

18. Den Haan J.M.M., Meadows L.M., Wang W. et al. The minor histocompatibility antigen HA-1: a diallelic gene with a single amino acid polymorphism. Science 1998;279(5353):1054–7. DOI: 10.1126/science.279.5353.1054

19. Pierce R.A., Field E.D., Mutis T. et al. The HA-2 minor histocompatibility antigen is derived from a diallelic gene encoding a novel human class I myosin protein. J Immunol 2001;167(6): 3223–30. DOI: 10.4049/jimmunol.167.6.3223

20. Bijen H.M., Hassan C., Kester M.G.D. et al. Specific T cell responses against minor histocompatibility antigens cannot generally be explained by absence of their allelic counterparts on the cell surface. Proteomics 2017;18(12):1700250. DOI: 10.1002/pmic.201700250

21. Granados D., Rodenbrock A., Laverdure J.P. et al. Proteogenomicbased discovery of minor histocompatibility antigens with suitable features for immunotherapy of hematologic cancers. Leukemia 2016;30(6):1344–54. DOI: 10.1038/leu.2016.22

22. Goulmy E., Termijtelen A., Bradley B.A. et al. HLA restriction of non-HLA-A, -B, -C and -D cell mediated lympholysis (CML). Tissue Antigens 1976;8(5):317–26. DOI: 10.1111/j.1399-0039.1976.tb00583.x

23. Пилунов А.М., Романюк Д.С., Ефимов Г.А., Савченко В.Г. Минорные антигены гистосовместимости как мишени Т-клеточной иммунотерапии. Гематология и трансфузиология 2021;66(3):322–45. DOI: 10.35754/0234-5730-2021-66-3-322-345

24. Романюк Д.С., Хмелевская А.А., Постовская А.М. и др. Клинически значимые минорные антигены гистосовместимости для российских пациентов, получающих трансплантацию стволовых клеток крови. Медицинская иммунология 2019;21(5):847–60. DOI: 10.15789/1563-0625-2019-5-847-860

25. Wenandy L., Kollgaard T., Letsch A. et al. The 1170 A–P singlenucleotide polymorphism (SNP) in the Her-2/neu protein (HER2) as a minor histocompatibility antigen (mHag). Leukemia 2009;23(10):1926–9. DOI: 10.1038/leu.2009.112

26. Den Haan J.M., Sherman N.E., Blokland E. et al. Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science 1995;268(5216):1476–80. DOI: 10.1126/science.7539551

27. Oostvogels R., Minnema M.C., van Elk M. et al. Towards effective and safe immunotherapy after allogeneic stem cell transplantation: identification of hematopoietic-specific minor histocompatibility antigen UTA2-1. Leukemia 2013;27(3):642–9. DOI: 10.1038/leu.2012.277

28. Van Bergen C.A.M., Kester M.G.D., Jedema I. et al. Multiple myeloma-reactive T cells recognize an activation-induced minor histocompatibility antigen encoded by the ATP-dependent interferon-responsive (ADIR) gene. Blood 2007;109(9):4089–96. DOI: 10.1182/blood-2006-08-043935

29. Hombrink P., Hassan C., Kester M.G. et al. Identification of biological relevant minor histocompatibility antigens within the B-lymphocyte-derived HLA-ligandome using a reverse immunology approach. Clin Cancer Res 2015;21(9):2177–86. DOI: 10.1158/1078-0432.CCR-14-2188

30. Tykodi S.S., Fujii N., Vigneron N. et al. C19orf48 encodes a minor histocompatibility antigen recognized by CD8+ cytotoxic T cells from renal cell carcinoma patients. Clin Cancer Res 2008;14(16):5260–9. DOI: 10.1158/1078-0432.ccr-08-0028

31. Wölfel C., Lennerz V., Lindemann E. et al. Dissection and molecular analysis of alloreactive CD8+ T cell responses in allogeneic haematopoietic stem cell transplantation. Cancer Immunol Immunother 2007;57(6):849–57. DOI: 10.1007/s00262-007-0421-1

32. Van Bergen C.A.M., Rutten C.E., van der Meijden E.D. et al. Highthroughput characterization of 10 new minor histocompatibility antigens by whole genome association scanning. Cancer Res 2010;70(22):9073–83. DOI: 10.1158/0008-5472.can-10-1832

33. Armistead P.M., Liang S., Li H. et al. Common minor histocompatibility antigen discovery based upon patient clinical outcomes and genomic data. PLoS One 2010;6(8):e23217. DOI: 10.1371/journal.pone.0023217

34. Hombrink P., Hassan C., Kester M.G.D. et al. Discovery of T cell epitopes implementing HLA-peptidomics into a reverse immunology approach. J Immunol 2013;190(8):3869–77. DOI: 10.4049/jimmunol.1202351

35. Kamei M., Nannya Y., Torikai H. et al. HapMap scanning of novel human minor histocompatibility antigens. Blood 2009;113(21):5041–8. DOI: 10.1182/blood-2008-07-171678

36. Van Bergen C.A., van Luxemburg-Heijs S.A., de Wreede L.C. et al. Selective graft-versus-leukemia depends on magnitude and diversity of the alloreactive T cell response. J Clin Invest 2017;127(2):517–29. DOI: 10.1172/JCI86175

37. Sherry S.T., Ward M.H., Kholodov M. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001;29(1):308–11. DOI: 10.1093/nar/29.1.308

38. Cunningham F., Allen J.E., Allen J. et al. Ensembl 2022. Nucleic Acids Res 2021;50(D1):D988–95. DOI: 10.1093/nar/gkab1049

39. Goulmy E., van Leeuwen A., Blokland E. et al. Major histocompatibility complex-restricted H-Y-specific antibodies and cytotoxic T lymphocytes may recognize different self determinants. J Exp Medicine 1982;155(5):1567–72. DOI: 10.1084/jem.155.5.1567

40. Goulmy E., Termijtelen A., Bradley B.A., van Rood J.J. Y-antigen killing by T cells of women is restricted by HLA. Nature 1977;266(5602):544–5. DOI: 10.1038/266544a0

41. Goulmy E., Gratama J.W., Blokland E. et al. A minor transplantation antigen detected by MHC-restricted cytotoxic T lymphocytes during graft-versus-host disease. Nature 1983;302(5904):159–61. DOI: 10.1038/302159a0

42. Goulmy E., van der Poel J., Giphart M., van Rood J.J. Analysis of the functional epitopes on different HLA-A2 molecules. Immunogenetics 1984;20(1):13–21. DOI: 10.1007/bf00373443

43. Goulmy E., Gratama J.W., Blokland E. et al. Recognition of an – as yet unknown – minor transplantation antigen by post-transplantation lymphocytes from an AML patient. Exp Hematol 1982.

44. Van Els C.A., D’Amaro J., Pool J. et al. Immunogenetics of human minor histocompatibility antigens: their polymorphism and immunodominance. Immunogenetics 1992;35(3):161–5. DOI: 10.1007/bf00185109

45. Goulmy E., Schipper R., Pool J. et al. Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N Engl J Med 1996;334(5):281–5. DOI: 10.1056/nejm199602013340501

46. De Bueger M., Bakker A., Rood J.J.V. et al. Tissue distribution of human minor histocompatibility antigens. Ubiquitous versus restricted tissue distribution indicates heterogeneity among human cytotoxic T lymphocyte-defined non-MHC antigens. J Immunol 1992;149(5):1788–94.

47. Mutis T., Goulmy E. Hematopoietic system-specific antigens as targets for cellular immunotherapy of hematological malignancies. Semin Hematol 2002;39(1):23–31. DOI: 10.1053/shem.2002.29248

48. Meadows L., Wang W., den Haan J.M. et al. The HLA-A*02:01-restricted H-Y antigen contains a posttranslationally modified cysteine that significantly affects T cell recognition. Immunity 1997;6(3):273–81. DOI: 10.1016/s1074-7613(00)80330-1

49. Chen Y., Sidney J., Southwood S. et al. Naturally processed peptides longer than nine amino acid residues bind to the class I MHC molecule HLA-A2.1 with high affinity and in different conformations. J Immunol 1994;152(6):2874–81.

50. Suh W.K., Cohen-Doyle M.F., Fruh K. et al. Interaction of MHC class I molecules with the transporter associated with antigen processing. Science 1994;264(5163):1322–6. DOI: 10.1126/science.8191286

51. Murata M., Warren E.H., Riddell S.R. A human minor histocompatibility antigen resulting from differential expression due to a gene deletion. J Exp Med 2003;197(10):1279–89. DOI: 10.1084/jem.20030044

52. Consortium I.H., Frazer K.A., Ballinger D.G. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007;449(7164):851–61. DOI: 10.1038/nature06258

53. Sudo T., Kamikawaji N., Kimura A. et al. Differences in MHC class I self peptide repertoires among HLA-A2 subtypes. J Immunol 1995;155(10):4749–56.

54. Andreatta M., Nielsen M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 2016;32(4):511–7. DOI: 10.1093/bioinformatics/btv639

55. Sudmant P.H., Rausch T., Gardner E.J. et al. An integrated map of structural variation in 2,504 human genomes. Nature 2015;526(7571):75–81. DOI: 10.1038/nature15394

56. Rongcun Y., Salazar-Onfray F., Charo J. et al. Identification of new HER2/neu-derived peptide epitopes that can elicit specific CTL against autologous and allogeneic carcinomas and melanomas. J Immunol 1999;163(2):1037–44.

57. Olayioye M.A., Neve R.M., Lane H.A., Hynes N.E. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 2000;19(13):3159–67. DOI: 10.1093/emboj/19.13.3159

58. Ayoub N.M., Al-Shami K.M., Yaghan R.J. Immunotherapy for HER2-positive breast cancer: recent advances and combination therapeutic approaches. Breast Cancer (Dove Medical Press) 2019;11:53–69. DOI: 10.2147/bctt.s175360

59. Tobias J., Garner-Spitzer E., Drinić M. et al. Vaccination against Her-2/neu, with focus on peptide-based vaccines. Esmo Open 2022;7(1):100361. DOI: 10.1016/j.esmoop.2021.100361

60. Szöőr Á., Tóth G., Zsebik B. et al. Trastuzumab derived HER2-specific CARs for the treatment of trastuzumab-resistant breast cancer: CAR T cells penetrate and eradicate tumors that are not accessible to antibodies. Cancer Lett 2020;484:1–8. DOI: 10.1016/j.canlet.2020.04.008

61. Xu J., Meng Q., Sun H. et al. HER2-specific chimeric antigen receptor-T cells for targeted therapy of metastatic colorectal cancer. Cell Death Dis 2021;12(12):1109. DOI: 10.1038/s41419-021-04100-0

62. Abrahao-Machado L.F., Scapulatempo-Neto C. HER2 testing in gastric cancer: An update. World J Gastroenterol 2016;22(19):4619–25. DOI: 10.3748/wjg.v22.i19.4619

63. Joshi S.K., Keck J.M., Eide C.A. et al. ERBB2/HER2 mutations are transforming and therapeutically targetable in leukemia. Leukemia 2020;34(10):2798–804. DOI: 10.1038/s41375-020-0844-7

64. Schuler M.M., Dönnes P., Nastke M.D. et al. SNEP: SNP-derived Epitope Prediction program for minor H antigens. Immunogenetics 2005;57(11):816–20. DOI: 10.1007/s00251-005-0054-5

65. Spaapen R.M., Lokhorst H.M., van den Oudenalder K. et al. Toward targeting B cell cancers with CD4+ CTLs: identification of a CD19-encoded minor histocompatibility antigen using a novel genome-wide analysis. J Exp Med 2008;205(12):2863–72. DOI: 10.1084/jem.20080713

66. Holloway P.A., Kaldenhoven N., Kok-Schoemaker H.M. et al. A class II-restricted cytotoxic T-cell clone recognizes a human minor histocompatibility antigen with a restricted tissue distribution. Br J Haematol 2004;128(1):73–81. DOI: 10.1111/j.1365-2141.2004.05283.x

67. Warren E.H., Otterud B.E., Linterman R.W. et al. Feasibility of using genetic linkage analysis to identify the genes encoding T cell-defined minor histocompatibility antigens. Tissue Antigens 2002;59(4):293–303. DOI: 10.1034/j.1399-0039.2002.590407.x

68. Marijt W.A.E., Heemskerk M.H.M., Kloosterboer F.M. et al. Hematopoiesis-restricted minor histocompatibility antigens HA-1-or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci USA 2003;100:2742–7. DOI: 10.1073/pnas.0530192100


Рецензия

Для цитирования:


Романюк Д.С., Пилунов А.М., Ефимов Г.А., Боголюбова А.В., Паровичникова Е.Н. Минорные антигены гистосовместимости, представляемые в HLA-А*02:01, и стратегии их поиска. Онкогематология. 2023;18(3):115-124. https://doi.org/10.17650/1818-8346-2023-18-3-115-124

For citation:


Romanyuk D.S., Pilunov A.M., Efimov G.A., Bogolyubova A.V., Parovichnikova E.N. Minor histocompatibility antigens represented in HLA-A*02:01 and their search strategies. Oncohematology. 2023;18(3):115-124. (In Russ.) https://doi.org/10.17650/1818-8346-2023-18-3-115-124

Просмотров: 4448


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)