Preview

Oncohematology

Advanced search

Clonal hematopoiesis and acute myeloid leukemia

https://doi.org/10.17650/1818-8346-2023-18-3-92-101

Abstract

   During aging phenotypic changes in the hematopoietic system occur, and possible reason of these changes can be accumulation of gene mutations in hematopoietic stem cells or early blood progenitors. Although these mutations are mostly neutral, some may give hematopoietic stem cells and progenitor cells a proliferative advantage. In this case clonal hematopoiesis will arise, which is characterized by the formation of a genetically distinct subpopulation of blood cells. Clonal hematopoiesis may become a basis for the development of hematologic malignancies, such as acute myeloid leukemia. Clonal hematopoiesis associated genes which are most commonly mutated in acute myeloid leukemia patients are DNMT3A, TET2 and ASXL1. The prognostic significance of these gene mutations currently remains a subject of study.

About the Authors

A. I. Kashlakova
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

Anastasiia Igorevna Kashlakova

125167

4 Novyy Zykovskiy Proezd

Moscow



B. V. Biderman
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

125167

4 Novyy Zykovskiy Proezd

Moscow



E. N. Parovichnikova
National Medical Research Center for Hematology, Ministry of Health of Russia
Russian Federation

125167

4 Novyy Zykovskiy Proezd

Moscow



References

1. Jagannathan-Bogdan M., Zon L.I. Hematopoiesis. Development 2013;140(12):2463–7. DOI: 10.1242/dev.083147

2. Chao M.P., Seita J., Weissman I.L. Establishment of a normal hematopoietic and leukemia stem cell hierarchy. Cold Spring Harb Symp Quant Biol 2008;73:439–49. DOI: 10.1101/sqb.2008.73.031

3. Velten L., Haas S.F., Raffel S. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 2017;19(4):271–81. DOI: 10.1038/ncb3493

4. Watcham S., Kucinski I., Gottgens B. et al. New insights into hematopoietic differentiation landscapes from single-cell RNA sequencing. Blood 2019;133(13):1415–26. DOI: 10.1182/blood-2018-08-835355

5. De Haan G., Lazare S.S. Aging of hematopoietic stem cells. Blood 2018;131(5):479–87. DOI: 10.1182/blood-2017-06-746412

6. Weiskopf D., Weinberger B., Grubeck-Loebenstein B. The aging of the immune system. Transpl Int 2009;22(11):1041–50. DOI: 10.1111/j.1432-2277.2009.00927.x

7. Mitchell E., Spencer Chapman M., Williams N. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 2022;606(7913):343–50. DOI: 10.1038/s41586-022-04786-y

8. Ainciburu M., Ezponda T., Berastegui N. et al. Uncovering perturbations in human hematopoiesis associated with healthy aging and myeloid malignancies at single-cell resolution. Elife 2023;12:e79363. DOI: 10.7554/eLife.79363

9. Abkowitz J.L., Catlin S.N., McCallie M.T. et al. Evidence that the number of hematopoietic stem cells per animal is conserved in mammals. Blood 2002;100(7):2665–7. DOI: 10.1182/blood-2002-03-0822

10. Catlin S.N., Busque L., Gale R.E. et al. The replication rate of human hematopoietic stem cells in vivo. Blood 2011;117(17):4460–6. DOI: 10.1182/blood-2010-08-303537

11. Lee-Six H., Øbro N.F., Shepherd M.S. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 2018;561(7724):473–8. DOI: 10.1038/s41586-018-0497-0

12. Welch J.S., Ley T.J., Link D.C. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012;150(2):264–78. DOI: 10.1016/j.cell.2012.06.023

13. Holstege H., Pfeiffer W., Sie D. et al. Somatic mutations found in the healthy blood compartment of a 115-yr-old woman demonstrate oligoclonal hematopoiesis. Genome Res 2014;24(5):733–42. DOI: 10.1101/gr.162131.113

14. Lyon M.F. The William Allan Memorial Award Address: X-chromosome inactivation and the location and expression of X-linked genes. Am J Hum Genet 1988;42(1):8–16.

15. Shevchenko A.I., Zakharova I.S., Zakian S.M. The evolutionary pathway of X chromosome inactivation in mammals. Acta Naturae 2013;5(2):40–53. (In Russ.). DOI: 10.32607/20758251-2013-5-2-40-53

16. Lyon M.F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 1961;190:372–3. DOI: 10.1038/190372a0

17. Beutler E., Yeh M., Fairbanks V.F. The normal human female as a mosaic of X-chromosome activity: studies using the gene for C-6-PD-deficiency as a marker. Proc Natl Acad Sci USA. 1962;48(1):9–16. DOI: 10.1073/pnas.48.1.9

18. Davidson R.G., Nitowsky H.M., Childs B. Demonstration of two populations of cells in the human female heterozygous for glucose-6-phosphate dehydrogenase variants. Proc Natl Acad Sci USA 1963;50(3):481–5. DOI: 10.1073/pnas.50.3.481

19. Linder D., Gartler S.M. Glucose-6-phosphate dehydrogenase mosaicism: utilization as a cell marker in the study of leiomyomas. Science 1965;150(3692):67–9. DOI: 10.1126/science.150.3692.67

20. Fialkow P.J., Gartler S.M., Yoshida A. Clonal origin of chronic myelocytic leukemia in man. Proc Natl Acad Sci USA 1967;58(4):1468–71. DOI: 10.1073/pnas.58.4.1468

21. Barr R.D., Fialkow P.J. Clonal origin of chronic myelocytic leukemia. N Engl J Med 1973;289(6):307–9. DOI: 10.1056/NEJM197308092890608

22. Gale R.E., Wheadon H., Goldstone A.H. et al. Frequency of clonal remission in acute myeloid leukaemia. Lancet 1993;341(8838):138–42. DOI: 10.1016/0140-6736(93)90004-z

23. Abrahamson G., Fraser N.J., Boyd J. et al. A highly informative X-chromosome probe, M27 beta, can be used for the determination of tumour clonality. Br J Haematol 1990;74(3):371–2. DOI: 10.1111/j.1365-2141.1990.tb02601.x

24. Cachia P.G., Culligan D.J., Thomas E.D. et al. Methylation of the DXS255 hypervariable locus 5’ CCGG site may be affected by factors other than X-chromosome activation status. Genomics 1992;14(1):70–4. DOI: 10.1016/s0888-7543(05)80285-x

25. Van Kamp H., Fibbe W.E., Jansen R.P. et al. Clonal involvement of granulocytes and monocytes, but not of T and B lymphocytes and natural killer cells in patients with myelodysplasia: analysis by X-linked restriction fragment length polymorphisms and polymerase chain reaction of the phosphoglycerat. Blood 1992;80(7):1774–80.

26. Gale R.E., Wheadon H., Linch D.C. Assessment of X-chromosome inactivation patterns using the hypervariable probe M27 beta in normal hemopoietic cells and acute myeloid leukemic blasts. Leukemia 1992;6(7):649–55.

27. Hodges E., Howell W.M., Boyd Y. et al. Variable X-chromosome DNA methylation patterns detected with probe M27 beta in a series of lymphoid and myeloid malignancies. Br J Haematol 1991;77(3):315–22. DOI: 10.1111/j.1365-2141.1991.tb08577.x

28. Minks J., Robinson W.P., Brown C.J. A skewed view of X chromosome inactivation. J Clin Invest 2008;118(1):20–3. DOI: 10.1172/JCI34470

29. Van den Veyver I.B. Skewed X inactivation in X-linked disorders. Semin Reprod Med 2001;19(2):183–91. DOI: 10.1055/s-2001-15398

30. Fey M.F., Liechti-Gallati S., Von Rohr A. et al. Clonality and X-inactivation patterns in hematopoietic cell populations detected by the highly informative M27β DNA probe. Blood 1994;83(4):931–8. DOI: 10.1182/blood.v83.4.931.931

31. Busque L., Mio R., Mattioli J. et al. Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age. Blood 1996;88(1):59–65. DOI: 10.1182/blood.v88.1.59.bloodjournal88159

32. Naumova A.K., Plenge R.M., Bird L.M. et al. Heritability of X chromosome – inactivation phenotype in a large family. Am J Hum Genet 1996;58(6):1111–9.

33. Busque L., Patel J.P., Figueroa M.E. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 2012;44(11):1179–81. DOI: 10.1038/ng.2413

34. Delhommeau F., Dupont S., Della Valle V. et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009;360(22):2289–301. DOI: 10.1056/NEJMoa0810069

35. Jaiswal S., Fontanillas P., Flannick J. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014;371(26):2488–98. DOI: 10.1056/nejmoa1408617

36. Genovese G., Kähler A.K., Handsaker R.E. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014;371(26):2477–87. DOI: 10.1056/nejmoa1409405

37. Xie M., Lu C., Wang J. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 2014;20(12):1472–8. DOI: 10.1038/nm.3733

38. Steensma D.P. Clinical consequences of clonal hematopoiesis of indeterminate potential. Hematology Am Soc Hematol Educ Program 2018;2018(1):264–9. DOI: 10.1182/asheducation-2018.1.264

39. Steensma D.P., Bejar R., Jaiswal S. et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015;126(1):9–16. DOI: 10.1182/blood-2015-03-631747

40. Young A.L., Challen G.A., Birmann B.M., Druley T.E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun 2016;7:12484. DOI: 10.1038/ncomms12484

41. Weissman I. Stem cell research: paths to cancer therapies and regenerative medicine. JAMA 2005;294(11):1359–66. DOI: 10.1001/jama.294.11.1359

42. Jan M., Majeti R. Clonal evolution of acute leukemia genomes. Oncogene 2013;32(2):135–40. DOI: 10.1038/onc.2012.48

43. Jan M., Snyder T.M., Corces-Zimmerman M.R. et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med 2012;4(149):149ra118. DOI: 10.1126/scitranslmed.3004315

44. Valent P., Kern W., Hoermann G. et al. Clonal hematopoiesis with oncogenic potential (CHOP): separation from CHIP and roads to AML. Int J Mol Sci 2019;20(3):789. DOI: 10.3390/ijms20030789

45. Cappelli L.V., Meggendorfer M., Baer C. et al. Indeterminate and oncogenic potential: CHIP vs CHOP mutations in AML with NPM1 alteration. Leukemia 2022;36(2):394–402. DOI: 10.1038/s41375-021-01368-1

46. McKerrell T., Park N., Moreno T. et al. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep 2015;10(8):1239–45. DOI: 10.1016/j.celrep.2015.02.005

47. Shlush L.I. Age-related clonal hematopoiesis. Blood 2018;131(5):496–504. DOI: 10.1182/blood-2017-07-746453

48. Ley T.J., Ding L., Walter M.J. et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010;363(25):2424–33. DOI: 10.1056/NEJMoa1005143

49. Shih A.H., Abdel-Wahab O., Patel J.P. et al. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 2012;12(9):599–612. DOI: 10.1038/nrc3343

50. Thol F., Damm F., Lüdeking A. et al. Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol 2011;29(21):2889–96. DOI: 10.1200/JCO.2011.35.4894

51. Wang R.Q., Chen C.J., Jing Y. et al. Characteristics and prognostic significance of genetic mutations in acute myeloid leukemia based on a targeted next-generation sequencing technique. Cancer Med 2020;9(22):8457–67. DOI: 10.1002/cam4.3467

52. Ribeiro A.F.T., Pratcorona M., Erpelinck-Verschueren C. et al. Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia. Blood 2012;119(24):5824–31. DOI: 10.1182/blood-2011-07-367961

53. Bezerra M.F., Lima A.S., Piqué-Borràs M.R. et al. Co-occurrence of DNMT3A, NPM1, FLT3 mutations identifies a subset of acute myeloid leukemia with adverse prognosis. Blood 2020;135(11): 870–5. DOI: 10.1182/blood.2019003339

54. Guillamot M., Cimmino L., Aifantis I. The Impact of DNA methylation in hematopoietic malignancies. Trends Cancer 2016;2(2):70–83. DOI: 10.1016/j.trecan.2015.12.006

55. Li Z., Cai X., Cai C.L. et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 2011;118(17): 4509–18. DOI: 10.1182/blood-2010-12-325241

56. Moran-Crusio K., Reavie L., Shih A. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 2011;20(1):11–24. DOI: 10.1016/j.ccr.2011.06.001

57. Quivoron C., Couronné L., Della Valle V. et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 2011;20(1):25–38. DOI: 10.1016/j.ccr.2011.06.003

58. Ley T.J., Miller C., Ding L. et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013;368(22):2059–74. DOI: 10.1056/NEJMoa1301689

59. Papaemmanuil E., Gerstung M., Bullinger L. et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016;374(23):2209–21. DOI: 10.1056/NEJMoa1516192

60. Wang R., Gao X., Yu L. The prognostic impact of tet oncogene family member 2 mutations in patients with acute myeloid leukemia: a systematic-review and meta-analysis. BMC Cancer 2019;19(1):389. DOI: 10.1186/s12885-019-5602-8

61. Chou W.C., Chou S.C., Liu C.Y. et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood 2011;118(14):3803–10. DOI: 10.1182/blood-2011-02-339747

62. Metzeler K.H., Maharry K., Radmacher M.D. et al. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 2011;29(10):1373–81. DOI: 10.1200/JCO.2010.32.7742

63. Pasca S., Jurj A., Zdrenghea M. et al. The potential equivalents of TET2 mutations. Cancers (Basel) 2021;13(7):1499. DOI: 10.3390/cancers13071499

64. Aloia L., Di Stefano B., Di Croce L. Polycomb complexes in stem cells and embryonic development. Development 2013;140(12): 2525–34. DOI: 10.1242/dev.091553

65. Katoh M. Functional and cancer genomics of ASXL family members. Br J Cancer 2013;109(2):299–306. DOI: 10.1038/bjc.2013.281

66. Zhang A., Wang S., Ren Q. et al. Prognostic value of ASXL1 mutations in patients with myelodysplastic syndromes and acute myeloid leukemia: a meta-analysis. Asia Pac J Clin Oncol 2022. DOI: 10.1111/ajco.13897

67. Gelsi-Boyer V., Brecqueville M., Devillier R. et al. Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J Hematol Oncol 2012;5:1–6. DOI: 10.1186/1756-8722-5-12

68. Schnittger S., Eder C., Jeromin S. et al. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia 2013;27(1):82–91. DOI: 10.1038/leu.2012.262

69. Metzeler K.H., Becker H., Maharry K. et al. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN favorable genetic category. Blood 2011;118(26):6920–9. DOI: 10.1182/blood-2011-08-368225

70. Paschka P., Schlenk R.F., Gaidzik V.I. et al. ASXL1 mutations in younger adult patients with acute myeloid leukemia: a study by the German–Austrian acute myeloid leukemia study group. Haematologica 2015;100(3):324–30. DOI: 10.3324/haematol.2014.114157

71. Döhner H., Estey E., Grimwade D. et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017;129(4):424–47. DOI: 10.1182/blood-2016-08-733196

72. Döhner H., Wei A.H., Appelbaum F.R. et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022;140(12):1345–77. DOI: 10.1182/blood.2022016867

73. Pratcorona M., Abbas S., Sanders M.A. et al. Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Haematologica 2012;97(3):388–92. DOI: 10.3324/haematol.2011.051532

74. Shlush L.I., Zandi S., Mitchell A. et al. Identification of preleukaemic haematopoietic stem cells in acute leukaemia. Nature 2014;506(7488):328–33. DOI: 10.1038/nature13038

75. Pløen G.G., Nederby L., Guldberg P. et al. Persistence of DNMT3A mutations at long-term remission in adult patients with AML. Br J Haematol 2014;167(4):478–86. DOI: 10.1111/bjh.13062

76. Morita K., Kantarjian H.M., Wang F. et al. Clearance of somatic mutations at remission and the risk of relapse in acute myeloid leukemia. J Clin Oncol 2018;36(18):1788–97. DOI: 10.1200/JCO.2017.77.6757

77. Lindsley R.C., Mar B.G., Mazzola E. et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood 2015;125(9):1367–76. DOI: 10.1182/blood-2014-11-610543

78. Krönke J., Bullinger L., Teleanu V. et al. Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia. Blood 2013;122(1):100–8. DOI: 10.1182/blood-2013-01-479188

79. Klco J.M., Miller C.A., Griffith M. et al. Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. JAMA 2015;314(8):811–22. DOI: 10.1001/jama.2015.9643

80. Jongen-Lavrencic M., Grob T., Hanekamp D. et al. Molecular minimal residual disease in acute myeloid leukemia. N Engl J Med 2018;378(13):1189–99. DOI: 10.1056/nejmoa1716863

81. Corces-Zimmerman M.R., Hong W.J., Weissman I.L. et al. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci USA 2014;111(7):2548–53. DOI: 10.1073/pnas.1324297111

82. Rothenberg-Thurley M., Amler S., Goerlich D. et al. Persistence of pre-leukemic clones during first remission and risk of relapse in acute myeloid leukemia. Leukemia 2018;32(7):1598–608. DOI: 10.1038/s41375-018-0034-z

83. Debarri H., Lebon D., Roumier C. et al. IDH1/2 but not DNMT3A mutations are suitable targets for minimal residual disease monitoring in acute myeloid leukemia patients: a study by the Acute Leukemia French Association. Oncotarget 2015;6(39):42345–53. DOI: 10.18632/oncotarget.5645

84. Gaidzik V.I., Weber D., Paschka P. et al. DNMT3A mutant transcript levels persist in remission and do not predict outcome in patients with acute myeloid leukemia. Leukemia 2018;32(1):30–7. DOI: 10.1038/leu.2017.200

85. Bhatnagar B., Eisfeld A.K., Nicolet D. et al. Persistence of DNMT3A R882 mutations during remission does not adversely affect outcomes of patients with acute myeloid leukaemia. Br J Haematol 2016;175(2):226–36. DOI: 10.1111/bjh.14254

86. Jentzsch M., Grimm J., Bill M. et al. Measurable residual disease of canonical versus non-canonical DNMT3A, TET2, or ASXL1 mutations in AML at stem cell transplantation. Bone Marrow Transplant 2021;56(10):2610–2. DOI: 10.1038/s41409-021-01407-6

87. Heuser M., Heida B., Konstantin B. et al. Posttransplantation MRD monitoring in patients with AML by next-generation sequencing using DTA and non-DTA mutations. Blood Adv 2021;5(9):2294–304. DOI: 10.1182/bloodadvances.2021004367

88. Hasserjian R.P., Steensma D.P., Graubert T.A. et al. Clonal hematopoiesis and measurable residual disease assessment in acute myeloid leukemia. Blood 2020;135(20):1729–38. DOI: 10.1182/blood.2019004770

89. Thol F., Gabdoulline R., Liebich A. et al. Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood 2018;132(16):1703–13. DOI: 10.1182/blood-2018-02-829911


Review

For citations:


Kashlakova A.I., Biderman B.V., Parovichnikova E.N. Clonal hematopoiesis and acute myeloid leukemia. Oncohematology. 2023;18(3):92-101. (In Russ.) https://doi.org/10.17650/1818-8346-2023-18-3-92-101

Views: 4425


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)