Preview

Онкогематология

Расширенный поиск

Клональное кроветворение и острые миелоидные лейкозы

https://doi.org/10.17650/1818-8346-2023-18-3-92-101

Аннотация

   С возрастом в системе кроветворения происходят фенотипические изменения, что может быть связано с накоплением соматических генетических мутаций в стволовых клетках крови или ранних клетках-предшественницах. Несмотря на то что в основном эти мутации нейтральны, некоторые могут придавать стволовым клеткам крови и клеткам-предшественницам пролиферативное преимущество. В этом случае будет развиваться клональное кроветворение, т. е. формирование клеточного клона, несущего мутации определенных генов. Клональное кроветворение может быть основой для развития злокачественных новообразований системы кроветворения, в частности, острых миелоидных лейкозов. Гены, ассоциированные с клональным кроветворением, в которых чаще всего выявляют мутации при острых миелоидных лейкозах, – DNMT3A, TET2 и ASXL1. Прогностическая значимость мутаций этих генов в настоящее время остается предметом изучения.

Об авторах

А. И. Кашлакова
ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России
Россия

Анастасия Игоревна Кашлакова

125167

Новый Зыковский пр-д, 4

Москва



Б. В. Бидерман
ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России
Россия

125167

Новый Зыковский пр-д, 4

Москва



Е. Н. Паровичникова
ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России
Россия

125167

Новый Зыковский пр-д, 4

Москва



Список литературы

1. Jagannathan-Bogdan M., Zon L.I. Hematopoiesis. Development 2013;140(12):2463–7. DOI: 10.1242/dev.083147

2. Chao M.P., Seita J., Weissman I.L. Establishment of a normal hematopoietic and leukemia stem cell hierarchy. Cold Spring Harb Symp Quant Biol 2008;73:439–49. DOI: 10.1101/sqb.2008.73.031

3. Velten L., Haas S.F., Raffel S. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 2017;19(4):271–81. DOI: 10.1038/ncb3493

4. Watcham S., Kucinski I., Gottgens B. et al. New insights into hematopoietic differentiation landscapes from single-cell RNA sequencing. Blood 2019;133(13):1415–26. DOI: 10.1182/blood-2018-08-835355

5. De Haan G., Lazare S.S. Aging of hematopoietic stem cells. Blood 2018;131(5):479–87. DOI: 10.1182/blood-2017-06-746412

6. Weiskopf D., Weinberger B., Grubeck-Loebenstein B. The aging of the immune system. Transpl Int 2009;22(11):1041–50. DOI: 10.1111/j.1432-2277.2009.00927.x

7. Mitchell E., Spencer Chapman M., Williams N. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 2022;606(7913):343–50. DOI: 10.1038/s41586-022-04786-y

8. Ainciburu M., Ezponda T., Berastegui N. et al. Uncovering perturbations in human hematopoiesis associated with healthy aging and myeloid malignancies at single-cell resolution. Elife 2023;12:e79363. DOI: 10.7554/eLife.79363

9. Abkowitz J.L., Catlin S.N., McCallie M.T. et al. Evidence that the number of hematopoietic stem cells per animal is conserved in mammals. Blood 2002;100(7):2665–7. DOI: 10.1182/blood-2002-03-0822

10. Catlin S.N., Busque L., Gale R.E. et al. The replication rate of human hematopoietic stem cells in vivo. Blood 2011;117(17):4460–6. DOI: 10.1182/blood-2010-08-303537

11. Lee-Six H., Øbro N.F., Shepherd M.S. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 2018;561(7724):473–8. DOI: 10.1038/s41586-018-0497-0

12. Welch J.S., Ley T.J., Link D.C. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012;150(2):264–78. DOI: 10.1016/j.cell.2012.06.023

13. Holstege H., Pfeiffer W., Sie D. et al. Somatic mutations found in the healthy blood compartment of a 115-yr-old woman demonstrate oligoclonal hematopoiesis. Genome Res 2014;24(5):733–42. DOI: 10.1101/gr.162131.113

14. Lyon M.F. The William Allan Memorial Award Address: X-chromosome inactivation and the location and expression of X-linked genes. Am J Hum Genet 1988;42(1):8–16.

15. Шевченко А.И., Захарова И.С., Закиян С.М. Эволюционный путь процесса инактивации Х-хромосомы у млекопитающих Acta Naturae 2013;5(2):40–53. DOI: 10.32607/20758251-2013-5-2-40-53

16. Lyon M.F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 1961;190:372–3. DOI: 10.1038/190372a0

17. Beutler E., Yeh M., Fairbanks V.F. The normal human female as a mosaic of X-chromosome activity: studies using the gene for C-6-PD-deficiency as a marker. Proc Natl Acad Sci USA. 1962;48(1):9–16. DOI: 10.1073/pnas.48.1.9

18. Davidson R.G., Nitowsky H.M., Childs B. Demonstration of two populations of cells in the human female heterozygous for glucose-6-phosphate dehydrogenase variants. Proc Natl Acad Sci USA 1963;50(3):481–5. DOI: 10.1073/pnas.50.3.481

19. Linder D., Gartler S.M. Glucose-6-phosphate dehydrogenase mosaicism: utilization as a cell marker in the study of leiomyomas. Science 1965;150(3692):67–9. DOI: 10.1126/science.150.3692.67

20. Fialkow P.J., Gartler S.M., Yoshida A. Clonal origin of chronic myelocytic leukemia in man. Proc Natl Acad Sci USA 1967;58(4):1468–71. DOI: 10.1073/pnas.58.4.1468

21. Barr R.D., Fialkow P.J. Clonal origin of chronic myelocytic leukemia. N Engl J Med 1973;289(6):307–9. DOI: 10.1056/NEJM197308092890608

22. Gale R.E., Wheadon H., Goldstone A.H. et al. Frequency of clonal remission in acute myeloid leukaemia. Lancet 1993;341(8838):138–42. DOI: 10.1016/0140-6736(93)90004-z

23. Abrahamson G., Fraser N.J., Boyd J. et al. A highly informative X-chromosome probe, M27 beta, can be used for the determination of tumour clonality. Br J Haematol 1990;74(3):371–2. DOI: 10.1111/j.1365-2141.1990.tb02601.x

24. Cachia P.G., Culligan D.J., Thomas E.D. et al. Methylation of the DXS255 hypervariable locus 5’ CCGG site may be affected by factors other than X-chromosome activation status. Genomics 1992;14(1):70–4. DOI: 10.1016/s0888-7543(05)80285-x

25. Van Kamp H., Fibbe W.E., Jansen R.P. et al. Clonal involvement of granulocytes and monocytes, but not of T and B lymphocytes and natural killer cells in patients with myelodysplasia: analysis by X-linked restriction fragment length polymorphisms and polymerase chain reaction of the phosphoglycerat. Blood 1992;80(7):1774–80.

26. Gale R.E., Wheadon H., Linch D.C. Assessment of X-chromosome inactivation patterns using the hypervariable probe M27 beta in normal hemopoietic cells and acute myeloid leukemic blasts. Leukemia 1992;6(7):649–55.

27. Hodges E., Howell W.M., Boyd Y. et al. Variable X-chromosome DNA methylation patterns detected with probe M27 beta in a series of lymphoid and myeloid malignancies. Br J Haematol 1991;77(3):315–22. DOI: 10.1111/j.1365-2141.1991.tb08577.x

28. Minks J., Robinson W.P., Brown C.J. A skewed view of X chromosome inactivation. J Clin Invest 2008;118(1):20–3. DOI: 10.1172/JCI34470

29. Van den Veyver I.B. Skewed X inactivation in X-linked disorders. Semin Reprod Med 2001;19(2):183–91. DOI: 10.1055/s-2001-15398

30. Fey M.F., Liechti-Gallati S., Von Rohr A. et al. Clonality and X-inactivation patterns in hematopoietic cell populations detected by the highly informative M27β DNA probe. Blood 1994;83(4):931–8. DOI: 10.1182/blood.v83.4.931.931

31. Busque L., Mio R., Mattioli J. et al. Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age. Blood 1996;88(1):59–65. DOI: 10.1182/blood.v88.1.59.bloodjournal88159

32. Naumova A.K., Plenge R.M., Bird L.M. et al. Heritability of X chromosome – inactivation phenotype in a large family. Am J Hum Genet 1996;58(6):1111–9.

33. Busque L., Patel J.P., Figueroa M.E. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 2012;44(11):1179–81. DOI: 10.1038/ng.2413

34. Delhommeau F., Dupont S., Della Valle V. et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009;360(22):2289–301. DOI: 10.1056/NEJMoa0810069

35. Jaiswal S., Fontanillas P., Flannick J. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014;371(26):2488–98. DOI: 10.1056/nejmoa1408617

36. Genovese G., Kähler A.K., Handsaker R.E. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014;371(26):2477–87. DOI: 10.1056/nejmoa1409405

37. Xie M., Lu C., Wang J. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 2014;20(12):1472–8. DOI: 10.1038/nm.3733

38. Steensma D.P. Clinical consequences of clonal hematopoiesis of indeterminate potential. Hematology Am Soc Hematol Educ Program 2018;2018(1):264–9. DOI: 10.1182/asheducation-2018.1.264

39. Steensma D.P., Bejar R., Jaiswal S. et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015;126(1):9–16. DOI: 10.1182/blood-2015-03-631747

40. Young A.L., Challen G.A., Birmann B.M., Druley T.E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun 2016;7:12484. DOI: 10.1038/ncomms12484

41. Weissman I. Stem cell research: paths to cancer therapies and regenerative medicine. JAMA 2005;294(11):1359–66. DOI: 10.1001/jama.294.11.1359

42. Jan M., Majeti R. Clonal evolution of acute leukemia genomes. Oncogene 2013;32(2):135–40. DOI: 10.1038/onc.2012.48

43. Jan M., Snyder T.M., Corces-Zimmerman M.R. et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med 2012;4(149):149ra118. DOI: 10.1126/scitranslmed.3004315

44. Valent P., Kern W., Hoermann G. et al. Clonal hematopoiesis with oncogenic potential (CHOP): separation from CHIP and roads to AML. Int J Mol Sci 2019;20(3):789. DOI: 10.3390/ijms20030789

45. Cappelli L.V., Meggendorfer M., Baer C. et al. Indeterminate and oncogenic potential: CHIP vs CHOP mutations in AML with NPM1 alteration. Leukemia 2022;36(2):394–402. DOI: 10.1038/s41375-021-01368-1

46. McKerrell T., Park N., Moreno T. et al. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep 2015;10(8):1239–45. DOI: 10.1016/j.celrep.2015.02.005

47. Shlush L.I. Age-related clonal hematopoiesis. Blood 2018;131(5):496–504. DOI: 10.1182/blood-2017-07-746453

48. Ley T.J., Ding L., Walter M.J. et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010;363(25):2424–33. DOI: 10.1056/NEJMoa1005143

49. Shih A.H., Abdel-Wahab O., Patel J.P. et al. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 2012;12(9):599–612. DOI: 10.1038/nrc3343

50. Thol F., Damm F., Lüdeking A. et al. Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol 2011;29(21):2889–96. DOI: 10.1200/JCO.2011.35.4894

51. Wang R.Q., Chen C.J., Jing Y. et al. Characteristics and prognostic significance of genetic mutations in acute myeloid leukemia based on a targeted next-generation sequencing technique. Cancer Med 2020;9(22):8457–67. DOI: 10.1002/cam4.3467

52. Ribeiro A.F.T., Pratcorona M., Erpelinck-Verschueren C. et al. Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia. Blood 2012;119(24):5824–31. DOI: 10.1182/blood-2011-07-367961

53. Bezerra M.F., Lima A.S., Piqué-Borràs M.R. et al. Co-occurrence of DNMT3A, NPM1, FLT3 mutations identifies a subset of acute myeloid leukemia with adverse prognosis. Blood 2020;135(11): 870–5. DOI: 10.1182/blood.2019003339

54. Guillamot M., Cimmino L., Aifantis I. The Impact of DNA methylation in hematopoietic malignancies. Trends Cancer 2016;2(2):70–83. DOI: 10.1016/j.trecan.2015.12.006

55. Li Z., Cai X., Cai C.L. et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 2011;118(17): 4509–18. DOI: 10.1182/blood-2010-12-325241

56. Moran-Crusio K., Reavie L., Shih A. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 2011;20(1):11–24. DOI: 10.1016/j.ccr.2011.06.001

57. Quivoron C., Couronné L., Della Valle V. et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 2011;20(1):25–38. DOI: 10.1016/j.ccr.2011.06.003

58. Ley T.J., Miller C., Ding L. et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013;368(22):2059–74. DOI: 10.1056/NEJMoa1301689

59. Papaemmanuil E., Gerstung M., Bullinger L. et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016;374(23):2209–21. DOI: 10.1056/NEJMoa1516192

60. Wang R., Gao X., Yu L. The prognostic impact of tet oncogene family member 2 mutations in patients with acute myeloid leukemia: a systematic-review and meta-analysis. BMC Cancer 2019;19(1):389. DOI: 10.1186/s12885-019-5602-8

61. Chou W.C., Chou S.C., Liu C.Y. et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood 2011;118(14):3803–10. DOI: 10.1182/blood-2011-02-339747

62. Metzeler K.H., Maharry K., Radmacher M.D. et al. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 2011;29(10):1373–81. DOI: 10.1200/JCO.2010.32.7742

63. Pasca S., Jurj A., Zdrenghea M. et al. The potential equivalents of TET2 mutations. Cancers (Basel) 2021;13(7):1499. DOI: 10.3390/cancers13071499

64. Aloia L., Di Stefano B., Di Croce L. Polycomb complexes in stem cells and embryonic development. Development 2013;140(12): 2525–34. DOI: 10.1242/dev.091553

65. Katoh M. Functional and cancer genomics of ASXL family members. Br J Cancer 2013;109(2):299–306. DOI: 10.1038/bjc.2013.281

66. Zhang A., Wang S., Ren Q. et al. Prognostic value of ASXL1 mutations in patients with myelodysplastic syndromes and acute myeloid leukemia: a meta-analysis. Asia Pac J Clin Oncol 2022. DOI: 10.1111/ajco.13897

67. Gelsi-Boyer V., Brecqueville M., Devillier R. et al. Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J Hematol Oncol 2012;5:1–6. DOI: 10.1186/1756-8722-5-12

68. Schnittger S., Eder C., Jeromin S. et al. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia 2013;27(1):82–91. DOI: 10.1038/leu.2012.262

69. Metzeler K.H., Becker H., Maharry K. et al. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN favorable genetic category. Blood 2011;118(26):6920–9. DOI: 10.1182/blood-2011-08-368225

70. Paschka P., Schlenk R.F., Gaidzik V.I. et al. ASXL1 mutations in younger adult patients with acute myeloid leukemia: a study by the German–Austrian acute myeloid leukemia study group. Haematologica 2015;100(3):324–30. DOI: 10.3324/haematol.2014.114157

71. Döhner H., Estey E., Grimwade D. et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017;129(4):424–47. DOI: 10.1182/blood-2016-08-733196

72. Döhner H., Wei A.H., Appelbaum F.R. et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022;140(12):1345–77. DOI: 10.1182/blood.2022016867

73. Pratcorona M., Abbas S., Sanders M.A. et al. Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Haematologica 2012;97(3):388–92. DOI: 10.3324/haematol.2011.051532

74. Shlush L.I., Zandi S., Mitchell A. et al. Identification of preleukaemic haematopoietic stem cells in acute leukaemia. Nature 2014;506(7488):328–33. DOI: 10.1038/nature13038

75. Pløen G.G., Nederby L., Guldberg P. et al. Persistence of DNMT3A mutations at long-term remission in adult patients with AML. Br J Haematol 2014;167(4):478–86. DOI: 10.1111/bjh.13062

76. Morita K., Kantarjian H.M., Wang F. et al. Clearance of somatic mutations at remission and the risk of relapse in acute myeloid leukemia. J Clin Oncol 2018;36(18):1788–97. DOI: 10.1200/JCO.2017.77.6757

77. Lindsley R.C., Mar B.G., Mazzola E. et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood 2015;125(9):1367–76. DOI: 10.1182/blood-2014-11-610543

78. Krönke J., Bullinger L., Teleanu V. et al. Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia. Blood 2013;122(1):100–8. DOI: 10.1182/blood-2013-01-479188

79. Klco J.M., Miller C.A., Griffith M. et al. Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. JAMA 2015;314(8):811–22. DOI: 10.1001/jama.2015.9643

80. Jongen-Lavrencic M., Grob T., Hanekamp D. et al. Molecular minimal residual disease in acute myeloid leukemia. N Engl J Med 2018;378(13):1189–99. DOI: 10.1056/nejmoa1716863

81. Corces-Zimmerman M.R., Hong W.J., Weissman I.L. et al. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci USA 2014;111(7):2548–53. DOI: 10.1073/pnas.1324297111

82. Rothenberg-Thurley M., Amler S., Goerlich D. et al. Persistence of pre-leukemic clones during first remission and risk of relapse in acute myeloid leukemia. Leukemia 2018;32(7):1598–608. DOI: 10.1038/s41375-018-0034-z

83. Debarri H., Lebon D., Roumier C. et al. IDH1/2 but not DNMT3A mutations are suitable targets for minimal residual disease monitoring in acute myeloid leukemia patients: a study by the Acute Leukemia French Association. Oncotarget 2015;6(39):42345–53. DOI: 10.18632/oncotarget.5645

84. Gaidzik V.I., Weber D., Paschka P. et al. DNMT3A mutant transcript levels persist in remission and do not predict outcome in patients with acute myeloid leukemia. Leukemia 2018;32(1):30–7. DOI: 10.1038/leu.2017.200

85. Bhatnagar B., Eisfeld A.K., Nicolet D. et al. Persistence of DNMT3A R882 mutations during remission does not adversely affect outcomes of patients with acute myeloid leukaemia. Br J Haematol 2016;175(2):226–36. DOI: 10.1111/bjh.14254

86. Jentzsch M., Grimm J., Bill M. et al. Measurable residual disease of canonical versus non-canonical DNMT3A, TET2, or ASXL1 mutations in AML at stem cell transplantation. Bone Marrow Transplant 2021;56(10):2610–2. DOI: 10.1038/s41409-021-01407-6

87. Heuser M., Heida B., Konstantin B. et al. Posttransplantation MRD monitoring in patients with AML by next-generation sequencing using DTA and non-DTA mutations. Blood Adv 2021;5(9):2294–304. DOI: 10.1182/bloodadvances.2021004367

88. Hasserjian R.P., Steensma D.P., Graubert T.A. et al. Clonal hematopoiesis and measurable residual disease assessment in acute myeloid leukemia. Blood 2020;135(20):1729–38. DOI: 10.1182/blood.2019004770

89. Thol F., Gabdoulline R., Liebich A. et al. Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood 2018;132(16):1703–13. DOI: 10.1182/blood-2018-02-829911


Рецензия

Для цитирования:


Кашлакова А.И., Бидерман Б.В., Паровичникова Е.Н. Клональное кроветворение и острые миелоидные лейкозы. Онкогематология. 2023;18(3):92-101. https://doi.org/10.17650/1818-8346-2023-18-3-92-101

For citation:


Kashlakova A.I., Biderman B.V., Parovichnikova E.N. Clonal hematopoiesis and acute myeloid leukemia. Oncohematology. 2023;18(3):92-101. (In Russ.) https://doi.org/10.17650/1818-8346-2023-18-3-92-101

Просмотров: 4410


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)