Nutritional status and tissue composition in children after hematopoietic stem cell transplantation
https://doi.org/10.17650/1818-8346-2011-6-4-27-32
Abstract
Hematopoietic stem cells transplantation (HSCT) is currently widely used for solid tumors, leukemia and autoimmune diseases therapy. Complications in post-transplant period, as well as specific therapy of these complications lead to nutritional status changes, which worsen post-transplant period and influence of outcome. To analyze nutritional status and tissue composition characteristics and determine the value of bioimpedance methods for complex examination of nutritional status in children after HSCT are the goal of this study. Changes in nutritional status and tissue composition of 34 children during HSCT due to various malignant and non-malignant diseases were analyzed. Bioimpedance measurements and somatometry was used to assess tissue composition. Significant worsening of nutritional status, skeletal muscle mass loss with a relatively stable adipose tissue to day +100 has been shown. A significant decrease of active cell mass and phase angle in all study phases were revealed. A high correlation between body fat mass index and skin-fat folds size over the triceps (r = 0.86), as well as between skeletal muscle mass index and shoulder muscles circle size (r = 0.82) was revealed. It is concluded that in the early post-transplant period (up to 100 days) nutritional status significantly worsened and tissue imbalance developed with a relative predominance of fat component and somatic protein pool reduction. Importance of comprehensive evaluation and monitoring of nutritional status to develop a strategy for nutritional support in children after HSCT is discussed.
About the Authors
A. Yu. VashuraRussian Federation
M. V. Konovalova
Russian Federation
E. V. Skorobogatova
Russian Federation
S. V. Belmer
Russian Federation
G. Ya. Tseytlin
Russian Federation
References
1. Скворцова Ю.В., Скоробогатова Е.В., Масчан А.А. Поражение гастроинтестинального тракта после трансплантации гемопоэтических стволовых клеток крови у детей. Вопросы детской диетологии 2009;7(2);36–40.
2. Papadopoulou A., Nathavitharana K., Williams M., Darbyshire P., Booth I. Diarrhea and weight loss after bone marrow transplantation in children. Pediatr Hematol Oncol 1994;11:601–11.
3. Guiot H.F.L., Biemond J., Klasen E. et al. Protein loss during acute graft versus host disease: diagnostic and clinical significance. Eur J Haematol 1987;24:55–67.
4. Szeluga D.J., Stuart R.K., Brookmeyer R., Utermohlen V., Santos G.W. Energy requirements of parenterally fed bone marrow transplant recipients. JPEN 1985;9:139–43.
5. Muscaritoli M., Grieco G., Capria S. et al. Nutritional and metabolic support in patients undergoing bone marrow transplantation. Am J Clin Nutr 2002;75:183–90.
6. McDonald G.B., Shulman H.M., Wolford J.L. et al. Liver disease after human marrow transplantation. Semin Liver Dis 1987;7:210–29.
7. Kushner R.F. Bioelectrical impedance analysis: a review of principles and applications. J Am Coll Nutr 1992;11(2):199–209.
8. Бахман А.Л. Искусственное питание. Под ред. А.Л. Костюченко, пер. с англ. М.: Изд. Бином, 2001. 183 с.
9. Николаев Д.В., Смирнов А.В., Бобринская И.Г., Руднев С.Г. Биоимпедансный анализ состава тела человека. М.: Наука, 2009.
10. Moore F.D., Olesen K.N., McMurray J.D. et al. The body cell and its supporting environment. Philadelphia: Sanders, 1963.
11. Forbes G.B. Human body composition: growth, aging, nutrition and activity. N.Y.: Springer, 1987. P. 350.
12. Коновалова М.В., Вашура А.Ю., Литвинов Д.В. и соавт. Изучение энергетического обмена у детей с онкологическими заболеваниями. Мед вестн Юга России 2010;2:90–3.
13. Baumgartner R.N., Chumlea W.C., Roche A.F. et al. Bioelectric impedance phase angle and body composition. Amer J Clin Nutr 1988;48(1):16–23.
14. Bosy-Westphal A., Danielzik S., Dorhofer R.-P. et al. Phase angle from bioelectrical impedance analysis: population reference values by age, sex, and body mass index. JPEN 2006;30(4):309–16.
15. Selberg O., Selberg D. Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. Eur J Appl Physiol 2002;86(6):509–16.
16. Gupta D., Lammersfeld C.A., Burrows J.L. et al. Bioelectrical impedance phase angle in clinical practice: implications for prognosis in advanced colorectal cancer. Am J Clin Nutr 2004;80(6):1634–8.
17. Николаев Д.В., Руднев С.Г., Свиридов С.В. Применения биоимпедансного анализа у пациентов в критических состояниях. Сб. докладов XV международной конференции «Новые информационные технологии в медицине, фармакологии, биологии и экологии», Ялта–Курзуф, 31 мая – 9 июня 2007;272–4.
18. Paiva S.I., Borges L.R., Halpern-Silveira D. et al. Standardized phase angle from bioelectrical impedance analysis as prognostic factor for survival in patients with cancer. Supp Care Cancer 2011;19:187–92.
19. Cole T.J., Flegal K.M., Nicholls D., Jackson A.A. Body mass index cut offs to define thinness in children and adolescents: international survey. BMJ 2007 July 28;335(7612):194.
20. Frisancho A.R. New norms of upper limb fat and muscle areas for assessment of nutritional status. Am J Clin Nutr 1981;34(11):2540–5.
21. Duggan C., Bechard L., Donovan K., Vangel M., O’Leary A., Holmes C., Lehmann L., Guinan E. Changes in resting energy expenditure among children undergoing allogeneic stem cell transplantation. Am J Clin Nutr 2003;78:104–9.
22. Lautz H.U., Selberg O., Korber J. et al. Protein-calorie malnutrition in liver cirrhosis. Clin Invest 1992;70:478–6.
23. Santarpia L., Marra M., Montagnese C. et al. Prognostic significance of bioelectrical impedance phase angle in advanced cancer: preliminary observations. Nutrition 2009;25(9):930–1.
Review
For citations:
Vashura A.Yu., Konovalova M.V., Skorobogatova E.V., Belmer S.V., Tseytlin G.Ya. Nutritional status and tissue composition in children after hematopoietic stem cell transplantation. Oncohematology. 2011;6(4):27-32. (In Russ.) https://doi.org/10.17650/1818-8346-2011-6-4-27-32