Comparative characteristics of healthy newborns cord blood cell composition and G-SCF-mobilized blood from healthy donors
https://doi.org/10.17650/1818-8346-2009-0-4-45-50
Abstract
Cord blood cell composition is a short-lasting delivery stress consequence and is similar on adult G-CSF-mobilized peripheral blood.
G-CSF realizes biological effect by number of secondary messengers, many of which are also natural effectors of stress. In this research comparative characteristics of cell composition, including lymphocytes subpopulations, CD34+ and CD133+ cells, hematopoietic progenitor cells colony-forming activity and mobilizing cytokines concentration (IL-8, MMP-2, MMP-9), between term newborns cord blood and G-CSF-mobilized peripheral blood is shown.
Mobilized cytokines concentration ratio in combination with CD34+ cells count in cord blood and mobilized peripheral blood suggests that delivery stress possibly is not single cause of cord blood features.
About the Authors
R. Sh. IbragimovRussian Federation
Moscow
E. V. Raikina
Russian Federation
Moscow
E. Yu. Osipova
Russian Federation
Moscow
N. N. Zimina
Russian Federation
Moscow
O. A. Maiorova
Russian Federation
Moscow
M. V. Yakovleva
Russian Federation
Moscow
S. A. Roumiantsev
Russian Federation
Moscow
References
1. Bailie K.E., Irvine A.E., Bridges J.M., McClure B.G. Granulocyte and granulocyte-macrophage colony-stimulating factors in cord and maternal serum at delivery. Pediatr Res 1994;35(2):164-8.
2. Райкина Е.В., Румянцев С.А. Механизм мобилизующего действия гранулоцитарного колониестимулирующего фактора на клетки крови у детей. Вопр практ педиат 2007;(3):23—9.
3. Райкина Е.В., Румянцев С.А. Экспрессия рецепторов к Г-КСФ и ИЛ; на клетках крови в динамике терапии Г-КСФ. Клет трансплантол ткан инженер 2007;(2):61—3.
4. Shimoda K., Okamura S., Harada N. et al. High-frequency granuloid colony-forming ability of G-CSF receptor possessing CD 34 antigen positive human umbilical cord blood hematopoietic progenitors. Exp Hematology 1992;23:226—8.
5. Shinjo K., Takeshita A., Ohnishi K. et al. Granulocyte colony-stimulating factor receptor at a various differentiation stages of normal and leukemic hematopoietic cells. Leuk Lymph 1997;25:37—46.
6. Райкина Е.В., Румянцев С.А. Концентрация ИЛ-8 и матрикс-металлопротеиназ в сыворотке крови в динамике терапии Г-КСФ. Клет трансплантол ткан инженер 2007;(2):43—5.
7. Chakrabarti S., Patel K.D. Regulation of matrix metalloproteinase-9 release from IL-8-stimulated human neutrophils. J Leuk Biol 2005;78:279—88.
8. Domanovic D., Wozniak G., Cernelc P. et al. Matrix metalloproteinase-9 and cell kinetics during the collection of peripheral blood stem cells by leukapheresis. Transfus Apheres Sci 2005;33:37—45.
9. Imamura R., Miyamoto T., Yoshimoto G. et al. Mobilization of human lymphoid progenitors after treatment with granulocyte colony-stimulating factor. J Immunol 2005;175:2647—54.
10. Jilma B., Hergovich N., Homoncik M. et al. Granulocyte colony-stimulating factor (G-CSF) downregulates its receptor (CD 114) on neutrophils and induces gelatinase B release in humans. Br J Haematol 2000;111:314—20.
11. Pruijt J.F., Fibbe W.E., Opdenakker G. et al. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the Metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci USA 1999;96:10863—8.
12. Robinson S.N., Pisarev V.M., Chavez J.M. et al. Use of matrix metalloproteinase-9 (MMP-9) knockout mice demonstrates that MMP-9 activity is not absolutely required for G-CSF or FLT-3 ligand-induced hematopoietic progenitor cell mobilization or engraftment. Stem Cells 2003;21:417—27.
13. Robinson S.N., Seina S.M., Gohr J.C. et al. Hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor and erythropoietin in the absence of matrix metalloproteinase-9. Stem Cell Develop 2005;14:317—28.
14. Thomas D.B., Yoffey J.M. Human fetal haemopoiesis. I. The cellular composition of fetal blood. Br J Haematol 1962;8:290—5.
15. Watanabe T., Kawano Y., Kanamaru S. et al. Endogenous interleukin-8 (IL-8) surge in granulocyte colony-stimulating factor-induced peripheral blood stem cell mobilization. Blood 1999;93(4):1157—63.
16. Roberts A.W., Metcalf D. Noncycling state of peripheral blood progenitor cells mobilized by granulocyte colony-stimulating factor and other cytokines. Blood 1995;86:1600.
17. Philpott N.J., Prue R.L., Marsh J.C. et al. G-CSF-mobilized CD34 peripheral blood stem cells are significantly less apoptotic then unstimulated peripheral blood CD34 cells: role of G-CSF as survival factor. Br J Haematol 1997;97(1):146—52.
18. Maianski N.A., Mul F.P., van Buul J.D. et al. Granulocyte colony-stimulating factor inhibits the mitochondria-dependent activation of caspase-3 in neutrophils. Blood 2002;99(2):672—9.
19. Maianski N.A., Roos D., Kuijpers T.W. Bid truncation, bid/bax targeting to the mitochondria, and caspase activation associated with neutrophil apoptosis are inhibited by granulocyte colony-stimulating factor. J Immunol 2004;172(11):7024—30.
Review
For citations:
Ibragimov R.Sh., Raikina E.V., Osipova E.Yu., Zimina N.N., Maiorova O.A., Yakovleva M.V., Roumiantsev S.A. Comparative characteristics of healthy newborns cord blood cell composition and G-SCF-mobilized blood from healthy donors. Oncohematology. 2009;(4):45-50. (In Russ.) https://doi.org/10.17650/1818-8346-2009-0-4-45-50