Preview

Oncohematology

Advanced search

Analysis of incidence and prognostic significance FLT3, c-KIT and NPM1 genes mutation in children with acute myeloid leukemia

https://doi.org/10.17650/1818-8346-2009-0-4-27-32

Abstract

Prognosis of patients with acute myeloid leukemia receiving intensive chemotherapy is defined as kariotyping anomalies, and mutations of genes responsible for surviving and self-maintenance leukemic cells. In the giving work incidence of mutation involving genes FLT3, c-KIT, NPM1 having prognostic value in adults is analysed. Kynase domain FLT3 mutation in 18 from 83 patients (21.6%) was detected. 2 from 18 patients (11%) achieved complete remission, 5 from 18 patients (27.7%) with FLT3 mutations were refractory to therapy, two patients died from treatment complications, 9 from 18 (50%) relapsed. Only 2 patients (11%) are alive in continuous complete remission. с-KIT mutations detected in 14.2% (2/14 patients), and NPM1 mutations represented allelic polymorphism. Thus, kynase domain FLT3 mutation are prognostic unfavorable.

About the Authors

L. V. Guk
Federal research center of pediatric hematology, oncology and immunology
Russian Federation

Moscow



T. V. Savitskaya
Republic Centre for Paediatric Oncology and Haematology
Belarus

Minsk



D. A. Domninsky
Federal research center of pediatric hematology, oncology and immunology
Russian Federation

Moscow



V. O. Bobrinina
Federal research center of pediatric hematology, oncology and immunology
Russian Federation

Moscow



M. M. Schneider
Federal research center of pediatric hematology, oncology and immunology
Russian Federation

Moscow



A. A. Maschan
Federal research center of pediatric hematology, oncology and immunology
Russian Federation

Moscow



O. V. Aleinikova
Republic Centre for Paediatric Oncology and Haematology
Belarus

Minsk



References

1. Dohner H. Implication of the molecular characterization of acute myeloid leukemia. Hematology 2007;1:412—9.

2. Kelly L., Gilliland D. Genetics of myeloid leukemias. Ann Rev Genom Hum Genet 2002;3:179—98.

3. Radtke I., Mullighan C., Ishii M. et al. Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia. PNAS 2009;106:12944—9.

4. Ley T., Mardis E., Ding L. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 2008;456:66—72.

5. Dohner K., Dohner H. Molecular characterization of acute myeloid leukemia. Haematologica 2008;93:976—82.

6. Radich J. Molecular classification of acute myeloid leukemia: are we there yet? J Clin Oncology 2008;26:4539—41.

7. Grisendi S., Pandolfi P. NPM mutations in acute myelogenous leukemia. New Engl J Med 2005;352(3):291—2.

8. Wertheim G., Bagg A. Nucleophosmin (NPM1) mutations in acute myeloid leukemia: An ongoing (cytoplasmic) tale of dueling mutations and duality of molecular genetic testing methodologies. J Mol Diagnost 2008;10(3):198—202.

9. Бавыкин А., Волкова М. FLT3-тирозинкиназа при острых нелимфобластных лейкозах. Онкогематология 2006;(1—2):15—24.

10. Lennartsson J., Jelacic T., Linnekin D. et al. Normal and oncogenic forms of the receptor tyrosine kinase Kit. Stem Cells 2005;23:16—43.

11. Gombart A., Hofmann W., Kawano S. et al. Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias. Blood 2002;99:1332—40.

12. Leroy H., Roumier C., Huyghe P. et al. CEBPA point mutations in hematological malignancies. Leukemia 2005;19(3):329—34.

13. Liu P., Tarle S., Hajra A. et al. Fusion between transcription factor CBF beta/PEBP2b and a myosin heavy chain in acute myeloid leukemia. Science 1993;261:1041—4.

14. Baldus C., Mrozek K., Marcucci G. et al. Clinical outcome of de novo acute myeloid leukaemia patients with normal cytogenetics is affected by molecular genetic alterations: a concise review. Br J Haematol 2007;137:387—400.

15. Lowenberg B. Acute myeloid leukemia: the challenge of capturing disease variety. Hematology 2008;1:1—11.

16. Shipley J., Butera J. Acute myelogenous leukemia. Experimental Hematology 2009;37:649—58.

17. Kaspers C., Zwaan C. Pediatric acute myeloid leukemia: towards high-quality cure of all patients. Haematologica 2007;92:1519—32.

18. Meshinchi S., Stirewalt D., Alonzo T. et al. Structural and numerical variation of FLT3/ITD in pediatric AML. Blood 2009;111:4930—3.

19. Meshinchi S., Arceci R. Prognostic factors and risk-based therapy in pediatric acute myeloid leukemia. Oncologist 2007;12:341—55.

20. Krstovski N., Tosic N., Janic D. et al. Incidence of FLT3 and nucleophosmin gene mutations in childhood acute myeloid leukemia: Serbian experience and the review of the literature. Med Oncol 2009; http://www.ncbi.nlm.nih.gov/sites/entrez

21. Greaves M. Pre-natal origins of childhood leukemia. Rev Clin Exp Hematol 2003;7:233—45.

22. Wiemels J. Chromosomal translocations in childhood leukemia: natural history, mechanisms and epidemiology. JNCI Monographs 2008;39:87—90.

23. Маниатис Т., Фрис Э., Сэмбрук Д. Молекулярное клонирование. М.: Мир, 1984. с. 265—6.

24. Mills K., Gilkers A., Walsh V. Rapid and sensitive detection of internal tandem duplication and activating loop mutations of FLT3. Br J Haematol 2005;130:203—8.


Review

For citations:


Guk L.V., Savitskaya T.V., Domninsky D.A., Bobrinina V.O., Schneider M.M., Maschan A.A., Aleinikova O.V. Analysis of incidence and prognostic significance FLT3, c-KIT and NPM1 genes mutation in children with acute myeloid leukemia. Oncohematology. 2009;(4):27-32. (In Russ.) https://doi.org/10.17650/1818-8346-2009-0-4-27-32

Views: 283


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)