Preview

Онкогематология

Расширенный поиск

Технологии культивирования мезенхимальных стволовых клеток ex vivo для клинического использования

https://doi.org/10.17650/1818-8346-2009-0-3-69-76

Аннотация

В настоящее время мезенхимальные стволовые клетки (МСК) находят все более широкое клиническое применение в различных областях медицины. Однако, несмотря на потребность в больших количествах человеческих МСК для клинической практики, имеется ограниченная информация относительно оптимизации условий культивирования, требуемых для их продукции. В настоящей статье обобщены данные литературы, касающиеся различных условий выделения и культивирования МСК. Рассмотрено влияние основной среды, плотности пассажа клеток, наличия или отсутствия эмбриональной телячьей сыворотки и других параметров на пролиферацию МСК. Представлены данные об использовании трехмерных структур и различных видов биореакторов для ex vivo экспансии МСК. Рассмотрены особенности мультилинейной дифференцировки МСК.

Об авторах

Т. В. Шаманская
ФГУ Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии Минздравсоцразвития России; ГУЗ Банк стволовых клеток Департамента здравоохранения г. Москвы
Россия

Татьяна Викторовна Шаманская

Москва



Е. Ю. Осипова
ФГУ Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии Минздравсоцразвития России; ГУЗ Банк стволовых клеток Департамента здравоохранения г. Москвы
Россия

Москва



С. А. Румянцев
ФГУ Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии Минздравсоцразвития России; ГУЗ Банк стволовых клеток Департамента здравоохранения г. Москвы
Россия

Москва



Список литературы

1. Fouillard L., Chapel A., Bories D. et al. Infusion of allogeneic-related HLA mismatched mesenchymal stem cells for the treatment of incomplete engraftment following autologous haematopoietic stem cell transplantation. Leukemia 2007;21:568—70.

2. Zhao Z.-G., Liang Y., Li K. et al. Phenotypic and functional comparison of mesenchymal stem cells derived from the bone marrow of normal adults and patients with hematologic malignant diseases. Stem cell develop 2007;16:637—48.

3. Zhao Z., Tang X., You Y. et al. Assessment of bone marrow mesenchymal stem cell biological characteristics and support hemotopoiesis function in patients with chronic myeloid leukemia. Leuk Res 2006;30:993—1003.

4. Jiang Y., Jahagirdar B.N., Reinhardt R.L. et al. Pluripotency of mesenchymal stem cell derived from adult marrow. Nature 2002;9:418—41.

5. Pittenger M.F., Mackay A.M., Beck S.C. et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143—7.

6. Makino S., Fukuda K., Miyoshi S. et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999;103:697—705.

7. Young R.G., Butler D.L., Weber W. et al. Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res 1998;16:406—13.

8. Filvaroff E.H., Derynck R. Induction of myogenesis in mesenchymal cells by myoD depends on their degree of differentiation. Dev Biol 1996;178:459—71.

9. Alma J., Fibbe N., Fibbe W.E. Immunomodulatory properties of mesenchymal stromal cells. Blood 2007;110:3499—506.

10. Noort W.A., Kruisselbrink A.B., Anker P.S. et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34+ cells in NOD/SCID mice. Exp Hematol 2002;30:870—8.

11. Friedenstein A.J., Gorskaja J.F., Kulagina N.N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976;4:267—74.

12. Tuli R., Seghatoleslami M.R., Tuli S. et al. A simple, highyield method for obtaining multipotential mesenchymal progenitor cells from trabecular bone. Mol Biotechnol 2003;23:37—49.

13. Minguelll J.J., Erices A., Conget P. Mesenchymal stem cells. Exp Biol Med 2001;226:507—20.

14. Pountos I., Jones E., Tzioupis C. et al. Growing bone and cartilage. The role of mesenchymal stem cells. J Bone Joint Surg Br 2006;88:421—6.

15. Gnecchi M., Melo L.G. Bone marrow-derived mesenchymal stem cells: isolation, expansion, characterization, viral transduction, and production of conditioned medium. Methods Mol Biol 2009;482:281—94.

16. Wexler S.A., Donaldson C., Denning-Kendall P. et al. Adult bone marrow is a rich source of human mesenchymal 'stem' cells but umbilical cord and mobilized adult blood are not. Br J Haematol 2003;121:368—74.

17. Lazarus H., Haynesworth S., Gerson S. et al. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 1995;16:557—64.

18. Koc O., Gerson S., Cooper B. et al. Rapid hematopoietic recovery after coinfusion of autologous culture-expanded human mesenchymal stem cells (hMSCs) and PBPCs in breast cancer patients receiving high dose chemotherapy. J Clin Oncol 2000;18:307—16.

19. Peng L., Li H., Gu L. et al. Comparison of biological characteristics of marrow mesenchymal stem cells in hepatitis B patients and normal adults. World J Gastroenterol 2007;13:1743—6.

20. Seebach C., Henrich D., Tewksbury R. et al. Number and proliferative capacity of human mesenchymal stem cells are modulated positively in multiple trauma patients and negatively in atrophic nonunions. Calcif Tissue Int 2007;80:294—300.

21. Stenderup K., Justesen J., Clausen C., Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003;33:919—26.

22. Muraglia A., Cancedda R., Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 2000;113:1161—6.

23. Mackay M.A., Beck S.C., Murphy J.M. et al. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tis Engineer 1998;4(4):415—28.

24. Chen S.L., Fang W.W., Ye F. et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 2004;94:92—5.

25. Banfi A., Muraglia A., Dozin B. et al. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp Hematol 2000;28:707—15.

26. Digirolamo C.M., Stokes D., Colter D. et al. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 1999;107:275—81.

27. Simonsen J.L., Rosada C., Serakinci N. et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 2002;20:592—6.

28. Rubio D., Garcia-Castro J., Martin M.C. et al. Spontaneous human adult stem cell transformation. Cancer Res 2005;65:3035—9.

29. Lennon D.P., Caplan A.I. Isolation of human marrowderived mesenchymal stem cells. Exp Hematol 2006;34:1604—5.

30. Grisendi G., Anneren C., Cafarelli L. et al. Refining GMP-manufacured density media for optimized mesenchymal stroma/stem cell isolation and expansion. Bone Marr Transplant 2009;43:205.

31. Sotiropoulou P.A., Perez S.A., Salagianni M. et al. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 2006;24:462—71.

32. Shigeno Y., Ashton B.A. Human bone-cell proliferation in vitro decreases with human donor age. J Bone Joint Surg Br 1995;77:139—42.

33. Anselme K., Broux O., Noel B. et al. In vitro control of human bone marrow stromal cells for bone tissue engineering. Tis Engineer 2002;8:941—53.

34. Yamamoto N., Isobe M., Negishi A. et al. Effects of autologous serum on osteoblastic differentiation in human bone marrow cells. J Med Dent Sci 2003;50:63—9.

35. Koller M.R., Maher R.J., Manchel I. et al. Alternatives to animal sera for human bone marrow cell expansion: human serum and serum-free media. J Hematother 1998;7:413—23.

36. Kuznetsov S.A., Mankani M.H., Robey P.G. Effect of serum on human bone marrow stromal cells: ex vivo expansion and in vivo bone formation. Transplantation 2000;70:1780—7.

37. Yamaguchi M., Hirayama F., Wakamoto S. et al. Bone marrow stromal cells prepared using AB serum and bFGF for hematopoietic stem cells expansion. Transfusion 2002;42:921—7.

38. Stutea N., Holtza K., Bubenheimb M. et al. Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Experiment Hematol 2004;32:1212—25.

39. Meuleman N., Tondreau T., Delforge A. et al. Human marrow mesenchymal stem cell culture: serum-free medium allows better expansion than classical a-MEM medium. Eur J Haematol 2006;76:309—16.

40. Müller I., Kordowich S., Holzwarth C. et al. Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM. Cytotherapy 2006;8(5):437—44.

41. Phinney D.G., Kopen G., Isaacson R.L., Prockop D.J. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 1999;72:570—85.

42. Bianchi G., Banfi A., Mastrogiacomo M. et al. Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Experiment Cell Res 2003;287:98—105.

43. Na K., Kim S.W., Sun B.K. et al. Osteogenic differentiation of rabbit mesenchymal stem cells in thermo-reversible hydrogel constructs containing hydroxyapatite and bone morphogenic protein-2 (BMP-2). Biomaterials 2007;28:2631—7.

44. Benya P.D., Shaffer J.D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 1982;30:215—24.

45. Markusen J.F., Mason C., Hull D.A. et al. Behavior of adult human mesenchymal stem cells entrapped in alginate-GRGDY beads. Tis Engineer 2006;12:821—30.

46. Cristino S., Grassi F., Toneguzzi S. et al. Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11-based prototype ligament scaffold. J Biomed Mater Res A 2005;73:275—83.

47. Yang X.B., Bhatnagar R.S., Li S. et al. Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tis Engineer 2004;10:1148—59.

48. Bensaid W., Triffitt J.T., Blanchat C. et al. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 2003;24:2497—502.

49. Zhao F., Grayson W.L., Ma T. et al. Effects of hydroxyapatite in 3-D chitosangelatin polymer network on human mesenchymal stem cell construct development. Biomaterials 2006;27:1859—67.

50. Wan C., He Q., McCaigue M. et al. Nonadherent cell population of human marrow culture is a complementary source of mesenchymal stem cells (MSCs). J Orthop Res 2006;24:21—8.

51. Zhao F., Ma T. Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development. Biotechnol Bioeng 2005;91:482—93.

52. Saini S., Wick T.M. Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development. Biotechnol Prog 2003;19:510—21.

53. Chen X., Xu H., Wan C. et al. Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells. Stem Cells 2006;24:2052—9.

54. Tong J., Gordon M.S., Srour E.F. et al. In vivo administration of recombinant methionyl human stem cell factor expands the number of human marrow hematopoietic stem cells. Blood 1993;82:784—91.

55. Zandstra P.W., Conneally E., Petzer A.L. et al. Cytokine manipulation of primitive human hematopoietic cell self-renewal. Proc Natl Acad Sci USA 1997;94:4698—703.

56. Cao X., Wang Q., Ju D.W. et al. Efficient inducation of local and systemic antitumor immune response by liposome mediated intratumoral co-transfer of interleukin-2 gene and interleukin-6 gene. J Exp Clin Cancer Res 1999;18:191—200.

57. Bachier C.R., Gokmen E., Teale J. et al. Ex-vivo expansion of bone marrow progenitor cells for hematopoietic reconstitution following high-dose chemotherapy for breast cancer. Exp Hematol 1999;27:615—23.

58. Mackay A.M., Beck S.C., Murphy J.M. et al. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tis Engineer 1998;4:415—28.

59. Kopen G.C., Prockop D.J., Phinney D.G. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 1999;96:10711—6.

60. Taylor S.M., Jones P.A. Changes in phenotypic expression in embryonic and adult cells treated with 5-azacytidine. J Cell Physiol 1982;111:187—94.

61. Wakitani S., Saito T., Caplan A.I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 1995;18:1417—26.

62. Deng W., Obrocka M., Fischer I., Prockop D.J. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Communicat 2001;282:148—52.

63. Kohyama J., Abe H., Shimazaki T. et al. Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation 2001;68:235—44.

64. Woodbury D., Schwarz E.J., Prockop D.J., Black I.B. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neuroscience Res 2000;61:364—70.

65. Sanchez-Ramos J., Song S., Cardozo-Pelaez F. et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exper Neurol 2000;164:247—56.

66. Woodbury D., Reynolds K., Black I.B. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neuroscience Res 2002;69:908—17.


Рецензия

Для цитирования:


Шаманская Т.В., Осипова Е.Ю., Румянцев С.А. Технологии культивирования мезенхимальных стволовых клеток ex vivo для клинического использования. Онкогематология. 2009;(3):69-76. https://doi.org/10.17650/1818-8346-2009-0-3-69-76

For citation:


Shamanskaya T.V., Osipova E.Yu., Roumiantsev S.A. Mesenchymal stem cells ex vivo cultivation technologies for clinical use. Oncohematology. 2009;(3):69-76. (In Russ.) https://doi.org/10.17650/1818-8346-2009-0-3-69-76

Просмотров: 410


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)