Preview

Oncohematology

Advanced search

NKT cells: characteristic features and functional significance in the immune response regulation

Abstract

   A lymphocyte lineage which is referred to as NKT cells expresses both markers of NK cells and T lymphocytes. NKT cells play a key role in the regulation of different types of immune responses, contribute to the protection from tumor growth and metastasis, from different intracellular infections and from development of autoimmune diseases. NKT cells are of vital importance in the induction of antitumoral immune response due to their production of IFN-γ which activates NK cells, CD8+ T lymphocytes and macrophages.

About the Authors

O. V. Akinfieva
Russian Research Institute of Hematology and Transfusiology
Russian Federation

St.-Petersburg



L. N. Bubnova
Russian Research Institute of Hematology and Transfusiology
Russian Federation

St.-Petersburg



S. S. Bessmeltsev
Russian Research Institute of Hematology and Transfusiology
Russian Federation

St.-Petersburg



References

1. Sköld M. and Behar M. S. Role of CD1d-restricted NKT Cells in microbial immunity. Infection and Immunity 2003; 71 (10): 5447–55.

2. Godfrey D. I. and Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 2004; 114: 1379–88.

3. Van Dommelen S. L. H., Degli-Esposti M. NKT cells and viral immunity. Immunology and Cell Biology 2004; 82: 332–41.

4. Borowski C. and Bendelac A. Signaling for NKT cell development: the SAP-FynT connection. JEM 2005; 201 (6): 833–6.

5. Latour S., Roncagalli R., Chen R. et al. Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signaling in immune regulation. Nat Cell Biol 2003; 5: 149–54.

6. Veillette A. and Latour S. The SLAM family of immune-cell receptors. Curr Opin Immunol 2003; 15: 277–85.

7. Chung B., Aoukaty A., Dutz J. et al. Signaling lymphocytic activation molecule-associated protein controls NKT cell functions. J Immunol 2005; 174: 3153–7.

8. Bezbradica J. S., Hill T., Stanic A. K. et al. Commitment toward the natural T (iNKT) cell lineage occurs at the CD4+CD8+ stage of thymic ontogeny. Proc Natl Acad Sci 2005; 102: 5114–9.

9. Lodolce J. P., Boone D. L., Chai S. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 1998; 9: 669–76.

10. Taniguchi M., Harada M., Kojo S. et al. The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu Rev Immunol 2003; 21: 483–513.

11. Bendelac A., Savage P. B., Teyton L. The biology of NKT cells. Annu Rev Immunol 2007; 25: 297–336.

12. Gumperz J. E., Miyake S., Yamamura T. et al. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 2002; 195: 625–36.

13. Lee P. T., Benlagha K., Teyton L. et al. Distinct functional lineages of human Va24 natural killer cells. Jour Exp Med 2002; 195: 637–41.

14. Haj M. E., Yaacov A. B., Lalazar G. et al. Potential role of NKT regulatory cell ligands for the treatment of immune mediated colitis. WJG 2007; 28; 13 (44): 5799–5804.

15. Giabbai B., Sidobre S., Crispin M. D. et al. Crystal structure of mouse CD1d bound to the self ligand phosphatidylcholine: a molecular basis for NKT cell activation. J Immunol 2005; 175: 977–84.

16. Kinjo Y., Wu D., Kim G. et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 2005; 434: 520–5.

17. Mattner J. Debord K. L., Ismail N. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbal infections. Nature 2005; 434: 525–9.

18. Sriram V., Du W., Gervay-Hague J. et al. Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol 2005; 35: 1692–701.

19. Wu D., Xing G. W., Poles M. A. et al. Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Proc Natl Acad Sci USA 2005; 102: 1351–6.

20. Behar S. M., Cardell S. Diverse CD1d-restricted T cells: diverse phenotypes and diverse functions. Semin Immunol 2000; 12: 551–60.

21. Park S. H., Weiss A., Benlagha K. et al. The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J Exp Med 2001; 193: 893–904.

22. Chiu Y. H., Jayawardena J., Weiss A. et al. Distinct subsets of CD1d-restricted T cells recognize self-antiens loaded in different cellular compartments. J Exp Med 1999; 189: 103–10.

23. Lin H., Nieda M., Rozenkov V. et al. Analysis of the effect of different NKT cell subpopulations on the activation of CD4 and CD8 T cells, NK cells, and B cells. Exp Hematol 2006; 43: 289–95.

24. Miyamoto K., Miyake S., Yamamura T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001; 413: 531–4.

25. Gonzalez-Aseguinolaza G., Van Kaer L., Bergmann C. C. Natural killer T cell ligand α-galactosylceramide enhances protective immunity induced by malaria vaccines. J Exp Med 2002; 195: 617–24.

26. Moody D. B., Ulchirs T., Muchlecker W. et al. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 2000; 404: 884–8.

27. Brigl M., Bry L., Kent S. C. et al. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 2003; 4: 1230–7.

28. Fischer K., Scotet E., Niemeyer M. et al. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci USA 2004; 101: 10685–90.

29. Carnaud C., Lee D., Donnars O. et al. Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 1999; 163: 4647–50.

30. Baron J. L., Gardiner L., Nishimura S. et al. Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 2002; 16: 583–94.

31. Godfrey D. I., Berzins S. P. Control points in NKT-cell development. Nat Rev Immunol 2007; 7: 505–18.

32. Gombert J. M., Herbelin A., Tancrede-Bohin E. et al. Early quantative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur J Immunol 1996; 26: 2989–98.

33. Araki M., Kondo T., Gumperz J. E. et al. Th2 bias of CD4+ NKT cells derived from multiple sclerosis in remission. Int Immunol 2003; 15: 279–88.

34. Akbari O., Faul J. L., Hoyte E. G. et al. CD4+ invariant T-cell-receptor+natural killer T cells in bronchial asthma. N Engl J Med 2006; 354: 1117–29.

35. Jahng A., Maricic I., Aguilera C. et al. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med 2004; 199: 947–57.

36. Hayakawa Y., Rovero S., Forni G. et al. Alpha-galactosylceramide (KRN7000) suppression of chemical- and oncogenedependent carcinogenesis. Proc Natl Acad Sci USA 2003; 100: 9464–9.

37. Smyth M. J., Godfrey D. I. NKT cells and tumor immunity – a double-edged sword. Nat Immunol 2000; 1: 459–60.

38. Berzofsky J. A., Terabe M. NKT cells in tumor immunity: opposing subsets define a new immunoregulatory axis. J Immunol 2008; 180: 3627–35.

39. Cui J., Shin T., Kawano T. et al. Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science 1997; 278: 1623–8.

40. Street S. E., Cretney E., Smyth M. J. Perforin and interferon-gamma activities independently control tumor initiation, growth and metastasis. Blood 2001; 97: 192–7.

41. Metelitsa L. S., Naidenko O. V., Kant A. et al. Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol 2001; 167: 3114–22.

42. Terabe M. and Berzofsky J. A. The role of NKT cells in tumor immunity. Adv Cancer Res 2009; 101: 277–348.

43. Seino K., Motohashi S., Fujisawa T. et al. Natural killer T cell-mediated antitumor immune responses and their clinical applications. Cancer Sci 2006; 97: 807–12.

44. Tahir S. M., Cheng O., Shaulov A. et al. Loss of IFN-γ production by invariant NK T cells in advanced cancer. J Immunol 2001; 167: 4046–50.

45. Terabe M., Matsui S., Noben-Trauth N. et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nature Immunology 2000; 66: 3869–75.

46. Terabe M., Swann J., Ambrosino E. et al. A nonclassical non-Va14Ja18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med 2005; 202: 1627–33.

47. Montoya C. J., Jie H. B., Al-Harthi L. et al. Activation of plasmocytoid dendritic cells with TLR9 agonists initiates invariant NKT cell-mediated cross-talk with myeloid dendritic cells. J Immunol 2006; 177: 1028–39.

48. Azuma T., Takahashi T., Kunisato A. et al. Human CD4+CD25+ regulatory T cells suppress NKT cell functions. Cancer Res 2003; 63: 4516–20.

49. Hedge S., Chen X., Keaton J.M. et al. NKT cells direct monocytes into a DC differentiation pathway. J Leukoc Biol 2007; 81: 1224–35.

50. Salio M., Speak A. O., Shepherd D. et al. Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc Natl Acad Sci USA 2007; 104: 20490–5.

51. Chang D. H., Osman K., Connolly J. et al. Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 2005; 201: 1503–17.

52. Okai M., Nieda M., Tazbirkova A. et al. Human peripheral blood Valpha24+ Vbeta11+ NKT cells expand following administration of alpha-galactosylceramide-pulsed dendritic cells. Vox Sang 2002; 83: 250–3.

53. Ishikawa E., Motohashi S., Ishikawa A. et al. Dendritic cell maturation by CD11c-T cells and Valpha24+natural killer T-cell activation by alpha-galactosylceramide. Int J Cancer 2005; 117: 265–73.

54. Motohashi S., Ishikawa A., Ishikawa E. et al. Immunostimulatory and antitumor activities of monoglycosylceramides having various sugar moieties. Biol Pharm Bull 2006; 12: 6079–86.

55. Skinnider B. F., Kapp U., Mak T. W. The role of interleukine 13 in classical Hodgkin lymphoma. Leuk Lymphoma 2002; 43: 1203–10.

56. Trieu Y., Wen X. Y., Skinneder B. F. et al. Soluble interleukin-13Ralpha2 decoy receptor inhibits Hodgkins lymphoma growth in vitro and in vivo. Cancer Res 2004; 64: 3271–5.

57. Morris J. C., Shapiro G. I., Tan A. R. et al. Phase I/II study of GC1008: a human anti-transforming growth factor-beta (TGFb) monoclonal antibody (MAb) in patients with advanced malignant melanoma (MM) or renal cell carcinoma (RCC). J Clin Oncol 2008; 26: 489.


Review

For citations:


Akinfieva O.V., Bubnova L.N., Bessmeltsev S.S. NKT cells: characteristic features and functional significance in the immune response regulation. Oncohematology. 2010;(4):39-47. (In Russ.)

Views: 1264


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)