NKT-клетки: характерные свойства и функциональная значимость для регуляции иммунного ответа
Аннотация
NKT-клетки представляют собой субпопуляцию лимфоцитов, экспрессирующих как маркеры NK-клеток, так и Т-клеточные дифференцировочные антигены. NKT-клетки служат важнейшими регуляторами иммунного ответа, способствуя защите организма от возникновения, роста и метастазирования опухолей, от внутриклеточных инфекций различной природы, а также от развития аутоиммунных заболеваний. NKT-клетки играют ключевую роль в индукции противоопухолевого иммунного ответа за счет продукции IFN-γ, активирующего NK-клетки, CD8+ T-лимфоциты и макрофаги.
Ключевые слова
Об авторах
О. В. АкинфиеваРоссия
Ольга Викторовна Акинфиева
ФГУ Российский научно-исследовательский институт гематологии и трансфузиологии
Санкт-Петербург
Л. Н. Бубнова
Россия
ФГУ Российский научно-исследовательский институт гематологии и трансфузиологии
Санкт-Петербург
С. С. Бессмельцев
Россия
ФГУ Российский научно-исследовательский институт гематологии и трансфузиологии
Санкт-Петербург
Список литературы
1. Sköld M. and Behar M. S. Role of CD1d-restricted NKT Cells in microbial immunity. Infection and Immunity 2003; 71 (10): 5447–55.
2. Godfrey D. I. and Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 2004; 114: 1379–88.
3. Van Dommelen S. L. H., Degli-Esposti M. NKT cells and viral immunity. Immunology and Cell Biology 2004; 82: 332–41.
4. Borowski C. and Bendelac A. Signaling for NKT cell development: the SAP-FynT connection. JEM 2005; 201 (6): 833–6.
5. Latour S., Roncagalli R., Chen R. et al. Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signaling in immune regulation. Nat Cell Biol 2003; 5: 149–54.
6. Veillette A. and Latour S. The SLAM family of immune-cell receptors. Curr Opin Immunol 2003; 15: 277–85.
7. Chung B., Aoukaty A., Dutz J. et al. Signaling lymphocytic activation molecule-associated protein controls NKT cell functions. J Immunol 2005; 174: 3153–7.
8. Bezbradica J. S., Hill T., Stanic A. K. et al. Commitment toward the natural T (iNKT) cell lineage occurs at the CD4+CD8+ stage of thymic ontogeny. Proc Natl Acad Sci 2005; 102: 5114–9.
9. Lodolce J. P., Boone D. L., Chai S. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 1998; 9: 669–76.
10. Taniguchi M., Harada M., Kojo S. et al. The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu Rev Immunol 2003; 21: 483–513.
11. Bendelac A., Savage P. B., Teyton L. The biology of NKT cells. Annu Rev Immunol 2007; 25: 297–336.
12. Gumperz J. E., Miyake S., Yamamura T. et al. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 2002; 195: 625–36.
13. Lee P. T., Benlagha K., Teyton L. et al. Distinct functional lineages of human Va24 natural killer cells. Jour Exp Med 2002; 195: 637–41.
14. Haj M. E., Yaacov A. B., Lalazar G. et al. Potential role of NKT regulatory cell ligands for the treatment of immune mediated colitis. WJG 2007; 28; 13 (44): 5799–5804.
15. Giabbai B., Sidobre S., Crispin M. D. et al. Crystal structure of mouse CD1d bound to the self ligand phosphatidylcholine: a molecular basis for NKT cell activation. J Immunol 2005; 175: 977–84.
16. Kinjo Y., Wu D., Kim G. et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 2005; 434: 520–5.
17. Mattner J. Debord K. L., Ismail N. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbal infections. Nature 2005; 434: 525–9.
18. Sriram V., Du W., Gervay-Hague J. et al. Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol 2005; 35: 1692–701.
19. Wu D., Xing G. W., Poles M. A. et al. Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Proc Natl Acad Sci USA 2005; 102: 1351–6.
20. Behar S. M., Cardell S. Diverse CD1d-restricted T cells: diverse phenotypes and diverse functions. Semin Immunol 2000; 12: 551–60.
21. Park S. H., Weiss A., Benlagha K. et al. The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J Exp Med 2001; 193: 893–904.
22. Chiu Y. H., Jayawardena J., Weiss A. et al. Distinct subsets of CD1d-restricted T cells recognize self-antiens loaded in different cellular compartments. J Exp Med 1999; 189: 103–10.
23. Lin H., Nieda M., Rozenkov V. et al. Analysis of the effect of different NKT cell subpopulations on the activation of CD4 and CD8 T cells, NK cells, and B cells. Exp Hematol 2006; 43: 289–95.
24. Miyamoto K., Miyake S., Yamamura T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001; 413: 531–4.
25. Gonzalez-Aseguinolaza G., Van Kaer L., Bergmann C. C. Natural killer T cell ligand α-galactosylceramide enhances protective immunity induced by malaria vaccines. J Exp Med 2002; 195: 617–24.
26. Moody D. B., Ulchirs T., Muchlecker W. et al. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 2000; 404: 884–8.
27. Brigl M., Bry L., Kent S. C. et al. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 2003; 4: 1230–7.
28. Fischer K., Scotet E., Niemeyer M. et al. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci USA 2004; 101: 10685–90.
29. Carnaud C., Lee D., Donnars O. et al. Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 1999; 163: 4647–50.
30. Baron J. L., Gardiner L., Nishimura S. et al. Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 2002; 16: 583–94.
31. Godfrey D. I., Berzins S. P. Control points in NKT-cell development. Nat Rev Immunol 2007; 7: 505–18.
32. Gombert J. M., Herbelin A., Tancrede-Bohin E. et al. Early quantative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur J Immunol 1996; 26: 2989–98.
33. Araki M., Kondo T., Gumperz J. E. et al. Th2 bias of CD4+ NKT cells derived from multiple sclerosis in remission. Int Immunol 2003; 15: 279–88.
34. Akbari O., Faul J. L., Hoyte E. G. et al. CD4+ invariant T-cell-receptor+natural killer T cells in bronchial asthma. N Engl J Med 2006; 354: 1117–29.
35. Jahng A., Maricic I., Aguilera C. et al. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med 2004; 199: 947–57.
36. Hayakawa Y., Rovero S., Forni G. et al. Alpha-galactosylceramide (KRN7000) suppression of chemical- and oncogenedependent carcinogenesis. Proc Natl Acad Sci USA 2003; 100: 9464–9.
37. Smyth M. J., Godfrey D. I. NKT cells and tumor immunity – a double-edged sword. Nat Immunol 2000; 1: 459–60.
38. Berzofsky J. A., Terabe M. NKT cells in tumor immunity: opposing subsets define a new immunoregulatory axis. J Immunol 2008; 180: 3627–35.
39. Cui J., Shin T., Kawano T. et al. Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science 1997; 278: 1623–8.
40. Street S. E., Cretney E., Smyth M. J. Perforin and interferon-gamma activities independently control tumor initiation, growth and metastasis. Blood 2001; 97: 192–7.
41. Metelitsa L. S., Naidenko O. V., Kant A. et al. Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol 2001; 167: 3114–22.
42. Terabe M. and Berzofsky J. A. The role of NKT cells in tumor immunity. Adv Cancer Res 2009; 101: 277–348.
43. Seino K., Motohashi S., Fujisawa T. et al. Natural killer T cell-mediated antitumor immune responses and their clinical applications. Cancer Sci 2006; 97: 807–12.
44. Tahir S. M., Cheng O., Shaulov A. et al. Loss of IFN-γ production by invariant NK T cells in advanced cancer. J Immunol 2001; 167: 4046–50.
45. Terabe M., Matsui S., Noben-Trauth N. et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nature Immunology 2000; 66: 3869–75.
46. Terabe M., Swann J., Ambrosino E. et al. A nonclassical non-Va14Ja18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med 2005; 202: 1627–33.
47. Montoya C. J., Jie H. B., Al-Harthi L. et al. Activation of plasmocytoid dendritic cells with TLR9 agonists initiates invariant NKT cell-mediated cross-talk with myeloid dendritic cells. J Immunol 2006; 177: 1028–39.
48. Azuma T., Takahashi T., Kunisato A. et al. Human CD4+CD25+ regulatory T cells suppress NKT cell functions. Cancer Res 2003; 63: 4516–20.
49. Hedge S., Chen X., Keaton J.M. et al. NKT cells direct monocytes into a DC differentiation pathway. J Leukoc Biol 2007; 81: 1224–35.
50. Salio M., Speak A. O., Shepherd D. et al. Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc Natl Acad Sci USA 2007; 104: 20490–5.
51. Chang D. H., Osman K., Connolly J. et al. Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 2005; 201: 1503–17.
52. Okai M., Nieda M., Tazbirkova A. et al. Human peripheral blood Valpha24+ Vbeta11+ NKT cells expand following administration of alpha-galactosylceramide-pulsed dendritic cells. Vox Sang 2002; 83: 250–3.
53. Ishikawa E., Motohashi S., Ishikawa A. et al. Dendritic cell maturation by CD11c-T cells and Valpha24+natural killer T-cell activation by alpha-galactosylceramide. Int J Cancer 2005; 117: 265–73.
54. Motohashi S., Ishikawa A., Ishikawa E. et al. Immunostimulatory and antitumor activities of monoglycosylceramides having various sugar moieties. Biol Pharm Bull 2006; 12: 6079–86.
55. Skinnider B. F., Kapp U., Mak T. W. The role of interleukine 13 in classical Hodgkin lymphoma. Leuk Lymphoma 2002; 43: 1203–10.
56. Trieu Y., Wen X. Y., Skinneder B. F. et al. Soluble interleukin-13Ralpha2 decoy receptor inhibits Hodgkins lymphoma growth in vitro and in vivo. Cancer Res 2004; 64: 3271–5.
57. Morris J. C., Shapiro G. I., Tan A. R. et al. Phase I/II study of GC1008: a human anti-transforming growth factor-beta (TGFb) monoclonal antibody (MAb) in patients with advanced malignant melanoma (MM) or renal cell carcinoma (RCC). J Clin Oncol 2008; 26: 489.
Рецензия
Для цитирования:
Акинфиева О.В., Бубнова Л.Н., Бессмельцев С.С. NKT-клетки: характерные свойства и функциональная значимость для регуляции иммунного ответа. Онкогематология. 2010;(4):39-47.
For citation:
Akinfieva O.V., Bubnova L.N., Bessmeltsev S.S. NKT cells: characteristic features and functional significance in the immune response regulation. Oncohematology. 2010;(4):39-47. (In Russ.)