Preview

Онкогематология

Расширенный поиск

Оптимизация экспериментальных моделей заболевания лейкозом у человека (обзор литературы)

https://doi.org/10.17650/1818-8346-2012-7-4-48-52

Аннотация

Данный обзор литературы посвящен актуальной проблеме оценки перспективности иммунотерапии, в том числе антигенспецифической клеточной терапии, при помощи животных моделей. В обзоре рассматриваются разные группы животных моделей, существующих на данный момент, и описываются методы создания этих моделей от разных линий иммунодефицитных мышей до нескольких вариантов приживления опухолевых клеток в организм животного. В обзоре затрагиваются темы возможного изучения стволовых опухолевых клеток с использованием мышиных моделей для лечения лейкоза при помощи адоптивной клеточной терапии, в том числе WT1. Затрагивается вопрос миграции, пролиферации человеческих лейкозных клеток в разных линиях мышей с разной степенью иммунодефицита. Предлагается сравнивать мышиную модель по иммунодефициту с клинической ситуацией у человека после курса химиотерапии, из этого следует оценка возможной эффективности иммунотерапии.

Об авторах

Д. Д. Панков
ФГБУ ФНКЦ ДГОИ им. Дмитрия Рогачева Минздрава России Мемориальный онкологический центр им. Слоуна-Кеттеринга
Россия


А. Г. Румянцев
ФГБУ ФНКЦ ДГОИ им. Дмитрия Рогачева Минздрава России
Россия


Список литературы

1. Maschan A.A., Rumyantsev A.G. Transplantation of hematopoietic stem cells in children. Acad Mia, 2003.

2. Houghton P.J., Adamson P.C., Blaney S. et al. Testing of new agents in childhood cancer preclinical models: meeting summary. Clin Cancer Res 2002;8:3646–57.

3. Pui C.H., Relling M.V., Campana D., Evans W.E. Childhood acute lymphoblastic leukemia. Rev Clin Exp Hematol 2002;6:161–80; discussion 200–2.

4. Doubrovina E.S., Doubrovin M.M., Sangyull L. et al. In vitro stimulation with WT1 peptide-loaded Epstein-Barr viruspositive B cells elicits high frequencies of WT1 peptide-specific T cells with in vitro and in vivo tumoricidal activity. Clinical Cancer Research 2004;10:7207–19.

5. Gutmann D.H., Hunter-Schaedle K. and Shannon K.M. Harnessing preclinical mouse models to inform human clinical cancer trials. J Clin Invest 2006;116(4):847–52.

6. Boxio R., Bossenmeyer-Pourié C., teinckwich N. et al. Mouse bone marrow contains large numbers of functionally competent neutrophils. J Leukoc Biol 2004;75(4):604–11. Epub 2003 Dec 23.

7. Singh P., Hu P., Hoggatt J. et al. Expansion of bone marrow neutrophils following G-CSF administration in mice results in osteolineage cell apoptosis and mobilization of hematopoietic stem and progenitor cells. Leukemia advance online publication 1 June 2012.

8. Baersch G., Möllers T., Hötte A. et al. Good engraftment of B-cell precursor ALL in NOD-SCID mice. Klin Padiatr 1997;209(4):178–85.

9. Meyer L.H., Debatin K.M. Diversity of human leukemia xenograft mouse models:implications for disease biology. Cancer Res 2011;71:7141–4. Published OnlineFirst November 16, 2011.

10. Bosma G.C., Custer R.P., Bosma M.J. A severe combined immunodeficiency mutation in the mouse. Nature 1983;301:527–30.

11. Kamel-Reid S., Letarte M., Sirard C. et al. A model of human acute lymphoblastic leukemia in immunedeficient SCID mice. Science 1989;246:1597–600.

12. Lücking-Famira K.M., Daniel P.T., Möller P. APO-1 (CD95) mediated apoptosis in human T-ALL engrafted in SCID mice. Leukemia 1994;8:1825–33.

13. Shultz L.D., Schweitzer P.A., Christianson S.W. et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 1995;154:180–91.

14. Lock R.B., Liem N., Farnsworth M.L. et al. The nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse model of childhood acute lymphoblastic leukemia reveals intrinsic differences in biologic characteristics at diagnosis and relapse. Blood 2002;99:4100–8.

15. Yan Y., Salomon O., McGuirk J. et al. Growth pattern and clinical correlation of subcutaneously inoculated human primary acute leukemias in severe combined immunodeficiency mice. Blood 1996 Oct 15;88(8):3137–46.

16. Kerbel R.S. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived – but they can be improved. Cancer Biol Ther 2003;2:134–9.

17. Schmitz M., Breithaupt P., Scheidegger N. et al. Xenografts of highly resistant leukemia recapitulate the clonal composition of the leukemogenic compartment. Blood 2011;118:1854–64.

18. Notta F., Mullighan C.G., Wang J.C. et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 2011 Jan 20;469(7330):362–7.

19. Allegrucci C., Wu Y.Z., Thurston A. et al. Restriction landmark genome scanning identifies culture-induced DNA methylation instability in the human embryonic stem cell epigenome. Hum Mol Genet 2007; 16:1253–68.

20. Knoepfler P.S. Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 2009 May;27(5):1050–6.

21. Kanato K., Hosen N., Yanagihara M. et al. The Wilms’ tumor gene WT1 is a common marker of progenitor cells in fetal liver. Biochem Biophys Res Commun 2005;326:836–43.

22. Sugiyama H. WT1 (Wilms’ Tumor Gene 1): biology and cancer immunotherapy. Jpn J Clin Oncol 2010;40(5):377–87.

23. Oji Y., Ogawa H., Tamaki H. et al. Expression of the Wilms, tumor gene WT1 in solid tumors and its involvement in tumor cell growth. Jpn J Cancer Res 1999 Feb;90(2):194–204.

24. Abbruzzese J.L., Evans D.B., Willett C.G. et al. Gastrointestinal Oncology 2004. Oxford University press. Pp. 689–90.

25. Doubrovina E., Carpenter T., Pankov D. et al. Mapping of novel peptides of WT-1 and presenting HLA alleles that induce epitopespecific HLA-restricted T cells with cytotoxic activity against WT-1(+)

26. leukemias. Blood 2012 Aug 23;120(8):1633–46.

27. Pearce D.J., Taussig D., Zibara K. et al. AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood 2006;107:1166–73.

28. Meyer L.H., Eckhoff S.M., Queudeville M. et al. Early relapse in all is identified by time to leukemia in NOD/SCID mice and is characterized by a gene signature involving survival pathways. Cancer Cell 2011;19:206–17.

29. Malaise M., Neumeier M., Botteron C. et al. Stable and reproducible engraftment of primary adult and pediatric acute myeloid leukemia in NSG mice. Leukemia 2011;25:1635–9.

30. Yurasov S.V., Flasshove M., Vladimirskaya E.B. et al. Low density mononuclear cells from umbilical cord blood as a target for retrovirally mediated gene transfer. Russ J Immunol 1996 Dec;1(1):35–40.

31. Fukuda S., Abe M., Onishi C. et al. Survivin selectively modulates genes deregulated in human leukemia stem cells. J Oncol 2011;2011:946936. doi:10.1155/2011/946936. Epub 2010 Dec 23.

32. Mazurier F., Doedens M., Gan O.I., Dick J.E. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med 2003;9:959–63.

33. Spiegel A., Kollet O., Peled A. et al. Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood 2004;103:2900–7.

34. Manz M.G. Human-hemato-lymphoidsystem mice: opportunities and challenges. Immunity 2007;26:537–41.

35. Wunderlich M., Chou F.S., Link K.A. et al. AML xenograft efficiency is significantly improved in NOD/SCIDIL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 2010;24:1785–8.

36. Bonnet D., Bhatia M., Wang J.C. et al. Cytokine treatment or accessory cells are required to initiate engraftment of purified rimitive human hematopoietic cells transplanted at limiting doses into NOD/SCID mice. Bone Marrow Transplant 1999;23:203–9.

37. Feuring-Buske M., Gerhard B., Cashman J. et al. Improved engraftment of human acute myeloid leukemia progenitor cells in beta 2-microglobulin-deficient NOD/SCID mice and in NOD/SCID mice transgenic for human growth factors. Leukemia 2003;17:760–3.

38. Ballen K.K., Valinski H., Greiner D. et al. Variables to predict engraftment of umbilical cord blood in to immunodeficient mice: usefulness of the non-obese diabetic – severe combined immunodeficient assay. Br J Haematol 2001;114:211–8.

39. Kong Y., Yoshida S., Saito Y. et al. CD34þCD38þCD19 as well as CD34þCD38- CD19þ cells are leukemia-initiating cells ith self-renewal capacity in human Bprecursor ALL. Leukemia 2008;22(6):1207–13.

40. Alberta J.A., Springett G.M., Rayburn H. et al. Role of the WT1 tumor suppressor in murine hematopoiesis. Blood 2003 Apr 1;101(7):2570–4.

41. Cox C.V., Evely R.S., Oakhill A. et al. Characterization of acute lymphoblastic leukemia progenitor cells. Blood 2004;104:2919–25.

42. le Viseur C., Hotfilder M., Bomken S. et al. In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stemcell properties. Cancer Cell 2008;14:47–58.

43. Parman T., Wiley M.J., Wells P.G. Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat Med 1999;5:582–5.

44. Inaba M., Kobayashi T., Tashiro T., Sakurai Y. Pharmacokinetic approach to rational therapeutic doses for human tumorbearing nude mice. Jpn J Cancer Res 1988 Apr;79(4):509–16.

45. Tashiro T., Inaba M., Kobayashi T. et al. Responsiveness of human lung cancer/nude mouse to antitumor agents in a model using clinically equivalent doses. Cancer Chemother Pharmacol 1989;24(3):187–92.

46. Inaba M., Kobayashi T., Tashiro T. et al. Evaluation of antitumor activity in a human breast tumor/nude mouse model with a special emphasis on treatment dose. Cancer 1989 Oct 15;64(8):1577–82.

47. Maruo K., Ueyama Y., Inaba M. et al. Responsiveness of subcutaneous human glioma xenografts to various antitumor agents. Anticancer Res 1990 Jan–Feb;10(1):209–12.


Рецензия

Для цитирования:


Панков Д.Д., Румянцев А.Г. Оптимизация экспериментальных моделей заболевания лейкозом у человека (обзор литературы). Онкогематология. 2012;7(4):48-52. https://doi.org/10.17650/1818-8346-2012-7-4-48-52

For citation:


Pankov D.D., Rumyantsev A.G. Optimization of experimental human leukemia models (review). Oncohematology. 2012;7(4):48-52. (In Russ.) https://doi.org/10.17650/1818-8346-2012-7-4-48-52

Просмотров: 8336


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)