Preview

Онкогематология

Расширенный поиск

Фуллерены и оксидативный стресс

https://doi.org/10.17650/1818-8346-2012-7-4-11-15

Полный текст:

Аннотация

Многие представители обширного семейства водорастворимых аддуктов фуллеренов и наночастиц на их основе привлекают серьезное внимание как противовирусные агенты, противоопухолевые агенты и средства адресной доставки лекарств. Сегодня получено огромное количество таких производных фуллерена С60. Однако для внедрения фуллереновых производных в медицинскую практику необходимо понимание причин и механизмов прямых и отдаленных последствий их эффектов in vivo. В первую очередь это касается их влияния на регуляцию процессов пролиферации, апоптоза и некроза. Огромное значение имеют способ получения, функционализации и морфология фуллереновых наночастиц (их размеры, форма, рельеф поверхности, аффинность к клеточным структурам), т. е. параметры, в зависимости от которых биологические эффекты наночастиц могут меняться от цитопротекторного до цитотоксического. Одним из основных эффектов фуллеренов на живые системы считается индукция образования активных форм кислорода. В данной лекции содержится анализ современных представлений о влиянии фуллеренов и их производных на образование активных форм кислорода и модуляции процессов пролиферации и апоптоза нормальных и опухолевых клеток.

Об авторах

М. А. Орлова
ФГБОУ ВПО «Московский государственный университет им. М.В. Ломоносова»
Россия
Химический факультет, кафедра радиохимии


Т. П. Трофимова
ФГБОУ ВПО «Московский государственный университет им. М.В. Ломоносова»
Россия
Химический факультет, кафедра радиохимии


А. П. Орлов
ГБОУ ВПО «Российский научно-исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия
медико-биологический факультет, кафедра медицинских нанобиотехнологий


О. А. Шаталов
ГБОУ ВПО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России
Россия
фармацевтический факультет, кафедра фармакологии


А. А. Свистунов
ГБОУ ВПО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России
Россия
фармацевтический факультет, кафедра фармакологии


Ю. К. Наполов
ГБОУ ВПО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России
Россия
фармацевтический факультет, кафедра фармакологии


В. П. Чехонин
ГБОУ ВПО «Российский научно-исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия
медико-биологический факультет, кафедра медицинских нанобиотехнологий


Список литературы

1. Orlova M.A., Orlov A.P. Role of zinc in an organism and its influence on processes leading to apoptosis. Br J Med Res 2011;1:239–305.

2. Portt L., Norman G., Clapp C., Greenwood M. Anti-apoptosis and cell survival. Biochim Biophys Acta 2011;1813:238–59.

3. Shvedova A.A., Kagan V.E., Fadeel B. Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu Rev Pharmacol Toxicol 2010;50:63–88.

4. Markovic Z., Trajkovic V. Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 2008;29:3561–73.

5. Yamakoshi Y., Umezawa N., Ryu A. et al. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-* versus 1O2. J Am Chem Soc 2003;125:12803–9.

6. Sayes C.M., Gobin A.M., Ausman K.D. et al. Nano- C60 cytotoxicity is due to lipid peroxidation. Biomaterials 2005;26:7587–95.

7. Scrivens W.A., Tour J.M., Creek K.E., Pirisi L. Synthesis of 14C-labeled C60, its suspension in water, and its uptake by human keratinocytes. J Am Chem Soc 1994;116:4517–8.

8. Maeda R., Noiri E., Isobe H. et al. A water-soluble fullerene vesicle alleviates angiotensin II-induced oxidative stress in human umbilical venous endothelial cells. Hypertension Res 2008;31:141–51.

9. Kolosnjaj J., Szwarc H., Moussa F. Toxicity studies of fullerenes and derivatives. Adv Exp Med Biol 2007;620:168–80.

10. Jia G., Wang H., Yan L. et al. Cytotoxicity of carbon nanomaterials: singlewall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 2005;39:1378–83.

11. Sayes C.M., Marchione A.A., Reed K.L., Warheit D.B. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett 2007;7:2399–406.

12. Baker G.L., Gupta A., Clark M.L. et al. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol Sci 2008;101:122–31.

13. Horie M., Nishio K., Kato H. et al. In vitro evaluation of cellular responses induced by stable fullerene C60 medium dispersion. J Biochem 2010;148:289–98.

14. Zhou S., Burger C., Chu B. et al. Spherical bilayer vesicles of fullerene-based surfactants in water: a laser light scattering study. Science 2001;291:1944–7.

15. Sawamura M., Kawai K., Matsuo Y. et al. Stacking of conical mesogens with a fullerene apex into polar columns in crystals and liquid crystals. Nature 2002;419:702–5.

16. Yin J.J., Lao F., Fu P.P. et al. The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials 2009;30:611–21.

17. Husebo L.O., Sitharaman B., Furukawa K. et al. Fullerenols revisited as stable radical anions. J Am Chem Soc 2004;126:12055–64.

18. Yamakoshi Y.N., Yagami T., Sueyoshi S., Miyata N. Acridine adduct of [60]fullerene with enhanced DNA-cleaving activity. J Org Chem 1996;61:7236–7.

19. Makha M., Purich A., Raston C.L., Sobolev A.N. Structural diversity of hostguest and intercalation complexes of fullerene C60. Eur J Inorg Chem 2006;3:507–17.

20. Deguchi S., Mukai S.A., Tsudome M., Horikoshi K. Facile generation of fullerene nanoparticles by hand-grinding. Adv Mater 2006;18:729–32.

21. Quaranta A., Zhang Y., Filippone S. et al. Photophysical studies of six amphiphilic 2:1 cyclodextrin:[60]fullerene derivatives. Chem Phys 2006;325:397–403.

22. Dhawan A., Taurozzi J.S., Pandey A.K. et al. Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity. Environ Sci Technol 2006;40:7394–401.

23. Deguchi S., Alargova R.G., Tsujii K. table dispersions of fullerenes, C60 and C70, in water: preparation and characterization. Langmuir 2001;17:6013–7.

24. Lyon D.Y., Adams L.K., Falkner J.C., Alvarez P.J. Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 2006;40:4360–6.

25. Brant J.A., Labille J., Bottero J.Y., Wiesner M.R. Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir 2006;22:3878–85.

26. Cook S.M., Aker W.G., Rasulev B.F. et al.Choosing safe dispersing media for С60 fullerenes by using cytotoxicity tests on the bacterium Escherichia coli. J Hazar Mater 2010;176:367–73.

27. Cho M., Fortner J.D., Hughes J.B., Kim J.H. Escherichia coli inactivation by water-soluble, ozonated С60 derivative: kinetics and mechanisms. Envir Sci Technol 2009;43:7410–5.

28. Каркищенко Н.Н. Нанобезопасность: новые подходы к оценке рисков и токсичности наноматериалов. Биомедицина 2009;1:5–27.

29. Nishimura T., Kubota R., Tahara M. et al. Biological effects of fullerene С60 in mouse embryonic stem cells. Toxicol Lett 2006;164S:S214.

30. Trpkovic A., Todorovic-Markovic B., Kleut D. et al. Oxidative stress-mediated hemolytic activity of solvent exchangeprepared fullerene (С60) nanoparticles. Nanotechnol 2010;21(37):375102.

31. Costa C.L.A., Chaves I.S., Ventura-Lima J. et al. In vitro evaluation of co-exposure of arsenium and an organic nanomaterial (fullerene, С60) in zebrafish hepatocytes. Comp Biochem Physiol C 2012;155:206–12.

32. Hu Z., Guan W., Wang W. et al. Protective effects of a novel cystine С60 derivative on hydrogen peroxide-induced apoptosis in rat pheochromocytoma PC12 cells. Chem Biol Interact 2007;167:135–44.

33. Hu Z., Guan W., Wang W. et al. Synthesis of amphiphilic amino acid С60 derivatives and their protective effect on hydrogen peroxide-induced apoptosis in rat pheochromocytoma cells. Carbon 2008;46:99–109.

34. Wang I.C., Tai L.A., Lee D.D. et al. С60 and water-soluble fullerene derivatives as antioxidants against radical-initiated lipid peroxidation. J Med Chem 1999;42: 4614–20.

35. Monti D., Moretti L., Salvioli S. et al. С60 carboxyfullerene exerts a protective activity against oxidative stress-induced apoptosis in human peripheral bloodmononuclear cells. Biochem Biophys Res Commun 2000;277:711–7.

36. Guan S., Bao Y., Jiang B., An L. Protective effect of protocatechuic acid from Alpinia oxyphyllaon hydrogen peroxideinduced oxidative PC12 cell death. Eur J Pharmacol 2006;538:73–9.

37. Xiao L., Takada H., Maeda K. et al. Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomed Pharmacotherapy 2005;59:351–8.

38. Alcaraz M.J., Megías J., García-Arnandis I. et al. New molecular targets for the treatment of osteoarthritis. iochem Pharmacol 2010;80:13–21.

39. Bal R., Turk G., Tuzcu M. et al. Protective effects of nanostructures of hydrated С60 fullerene on reproductive function in streptozotocin-diabetic male rats. Toxicology 2011;282:69–81.

40. Mirkov S.M., Djordjevic A.N., Andric N.L. et al. Nitric oxide-scavenging activity of polyhydroxylated fullerenol, С60(OH)24. Nitric Oxide 2004;11:201–7.

41. Bogdanovic G., Koji V., Dordevic A. t al. Modulating activity of fullerol С60(OH)22 on doxorubicin-induced cytotoxicity. Toxicol In Vitro 2004;18: 629–37.

42. Wielgus A.R., Zhao B., Chignell C.F. et al. Phototoxicity and cytotoxicity of fullerol in human retinal pigment epithelial cells. Toxicol Appl Pharmacol 2010; 242:79–90.

43. Cagle D.W., Kennel S.J., Mirzadeh S. et al. In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. Proc Natl Acad Sci USA 1999;96:5182–7.

44. Oberdorster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 2004;112:1058–62.

45. Lao F., Chen L., Li W. et al. Fullerene nanoparticles selectively enter oxidationdamaged cerebral microvessel endothelial cells and inhibit JNK related apoptosis. Acs Nano 2009;3:3358–68.

46. Lin J., Wu C. Surface characterization and platelet adhesion studies on polyurethane surface immobilized with C60. Biomaterials 1999;20:1613–20.

47. Linazasoro G. Potential applications of nanotechnologies to Parkinson’s disease therapy. Parkinson Relat Disor 2008; 14:383–92.

48. Morimoto Y., Hirohashi M., Ogami A. et al. Inflammogenic effect of wellcharacterized fullerenes in inhalation and ntratracheal instillation studies. Part Fibre Toxicol 2010;7:4–22.

49. Lee Y.T., Chiang L.Y., Chen W.J., Hsu H.C. Water-soluble hexasulfobutyl-[60]-fullerene inhibits low-density lipoprotein oxidation in aqueous and lipophilic phases. Proc Soc Exp Biol Med 2000;224:69–75.


Для цитирования:


Орлова М.А., Трофимова Т.П., Орлов А.П., Шаталов О.А., Свистунов А.А., Наполов Ю.К., Чехонин В.П. Фуллерены и оксидативный стресс. Онкогематология. 2012;7(4):11-15. https://doi.org/10.17650/1818-8346-2012-7-4-11-15

For citation:


Orlova M.A., Trofimova T.P., Orlov A.P., Shatalov O.A., Svistunov A.A., Napolov Y.K., Chekhonin V.P. Fullerene and oxidative stress. Oncohematology. 2012;7(4):11-15. (In Russ.) https://doi.org/10.17650/1818-8346-2012-7-4-11-15

Просмотров: 965


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)