Preview

Oncohematology

Advanced search

Molecular mechanisms of leukemogenesis

https://doi.org/10.17650/1818-8346-2012-7-1-46-54

About the Author

D. A. Domninskiy
Dmitriy Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology
Russian Federation


References

1. Домнинский Д.А. Молекулярные механизмы лейкозогенеза (цикл лекций для врачей). Лекция № 1 Онкогематол 2010;4:49–56.

2. Домнинский Д.А. Молекулярные механизмы лейкозогенеза. Лекция № 2. Механизмы реализации сигнальной трансдукции. Онкогематол 2011;1:76–84.

3. Домнинский Д.А. Молекулярные механизмы лейкозогенеза. Лекция № 3. Гемобластозы миелоидного происхождения. Онкогематол 2011;3:82–93.

4. Домнинский Д.А. Молекулярные механизмы лейкозогенеза. Лекция № 4. Гемобластозы лимфоидного происхождения. Онкогематол 2011;4:39–49.

5. Martini M., Vecchione L., Siena S. et al. Targeted therapies: how personal should we go? Nat Rev Clin Oncology 2012;9:87–97.

6. Dancey J., Bedard P., Onetto N., Hudson T. The genetic basis for cancer treatment decisions. Cell 2012;148:409–20.

7. Переводчикова Н. Таргетные препараты и их место в современной терапии опухолевых заболеваний. Клинич онкогематол 2009;2:367–73.

8. Billingsley M. Druggable targets and targeted drugs: enhancing the development of new therapeutics. Pharmacology 2008;82:239–44.

9. Oflazoglu E., Audoly L. Evolution of anti- CD20 monoclonal antibody therapeutics in oncology. MAbs 2010 Jan–Feb;2(1):14–9.

10. Licht J. Acute promyelocytic leukemia – weapons of mass differentiation. New Engl J Med 2009;360:928–30.

11. Quintas-Cardama A., Cortes J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 2009;113:1619–30.

12. Melo J., Barnes D. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer 2007;7:441–53.

13. Hazlehurst L., Bewry N., Nair R., Pinilla-Ibarz J. Signaling networks associated with BCR-ABL dependent transformation. Cancer Control 2009;16:100–7.

14. Frazer R., Irvine A., McMullin M. Chronic myeloid leukaemia in the 21st century. Ulster Med J 2007;76:8–17.

15. Hunter T. Treatment for chronic myelogenous leukemia: the long road to imatinib. J Clin Invest 2007;117:2036–43.

16. Colicelli J. ABL tyrosine kinases: evolution of function, regulation and specificity. Sci Signal 2010;3:re6.

17. Sharma S., Settleman J. Exploiting the balance between life and death: targeted cancer therapy and «oncogenic shock». Biochem Pharm 2010;80:666–73.

18. Weinstein I., Joe A. Oncogene addiction. Cancer Res 2008;68:3077–80.

19. Luo J., Solimini N., Elledge S. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 2009;136:823–37.

20. Hanahan D., Weinberg R. Hallmarks of cancer: the next generation. Cell 2011;144:646–74.

21. O’Hare T., Eide C., Deininger M. BCRABL kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 2007;110:2242–9.

22. Weisberg E., Manley P., Cowan-Jacob S. et al. Second generation inhibitors of BCRABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 2007;7:345–56.

23. Collins I. & Workman P. New approaches to molecular cancer therapeutics. Nat Chem Biol 2006;2:689–700.

24. Karaman M., Herrgard S., Treiber D. et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 2008;26:127–32.

25. Grebien F., Hantschel O., Wojcik J. et al. Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis. Cell 2011;147:306–19.

26. Hassan Q., Sharma S., Warmuth M. Allosteric inhibition of BCR-ABL. Cell Cycle 2010;9(18):3710–4.

27. Hantschel O. Allosteric BCR-ABL inhibitors in Philadelphia chromosomepositive acute lymphoblastic leukemia: ovel opportunities for drug combinations to overcome resistance. Haematologica 2012;97:157–9.

28. Cox A., Der C. The Raf inhibitor paradox: unexpected consequences of targeted drugs. Cancer Cell 2010;17:221–3.

29. Cox A., Der C. The RAF inhibitor paradox revisited. Cancer Cell 2012;21:147–9.30. Jackson D., Sood A. Personalized cancer medicine – advances and socio-economic challenges. Nat Rev Clin Oncol 2011;8:735–41.

30. Thangue N., Kerr D. Predictive biomarkers: a paradigm shift towards personalized cancer medicine. Nat Rev Clin Oncol 2011;8:587–96.

31. Bleicher K., Bohm H-J., Muller K., Alanine A. Hit and lead generation: beyond highthroughput screening. Nat Rev Drug Discovery 2003;2:369–78.

32. Чугунов А. Драг-дизайн: как в современном мире создаются новые лекарства. Биомолекула 2004 (http://www.biomolecula.ru/content/15).

33. Schneider G., Fechner U. Computerbased de novo design of drug-like molecules. Nat Rev Drug Discovery 2005;4:649–63.

34. Dittrich P., Manz A. Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discovery 2006;5(3):210–8.

35. Ding S., Schultz P. A role for chemistry in stem cell biology. Nature Biotechnology 2004;22:833–40.

36. Sharma S., Settleman J. Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev 2007;21:3214–31.


Review

For citations:


Domninskiy D.A. Molecular mechanisms of leukemogenesis. Oncohematology. 2012;7(1):46-54. (In Russ.) https://doi.org/10.17650/1818-8346-2012-7-1-46-54

Views: 9963


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)