Preview

Онкогематология

Расширенный поиск

Молекулярные механизмы лейкозогенеза

https://doi.org/10.17650/1818-8346-2012-7-1-46-54

Полный текст:

Аннотация

.

Об авторе

Д. А. Домнинский
ФГБУ ФНКЦ ДГОИ им. Дмитрия Рогачева Минздравсоцразвития России
Россия


Список литературы

1. Домнинский Д.А. Молекулярные механизмы лейкозогенеза (цикл лекций для врачей). Лекция № 1 Онкогематол 2010;4:49–56.

2. Домнинский Д.А. Молекулярные механизмы лейкозогенеза. Лекция № 2. Механизмы реализации сигнальной трансдукции. Онкогематол 2011;1:76–84.

3. Домнинский Д.А. Молекулярные механизмы лейкозогенеза. Лекция № 3. Гемобластозы миелоидного происхождения. Онкогематол 2011;3:82–93.

4. Домнинский Д.А. Молекулярные механизмы лейкозогенеза. Лекция № 4. Гемобластозы лимфоидного происхождения. Онкогематол 2011;4:39–49.

5. Martini M., Vecchione L., Siena S. et al. Targeted therapies: how personal should we go? Nat Rev Clin Oncology 2012;9:87–97.

6. Dancey J., Bedard P., Onetto N., Hudson T. The genetic basis for cancer treatment decisions. Cell 2012;148:409–20.

7. Переводчикова Н. Таргетные препараты и их место в современной терапии опухолевых заболеваний. Клинич онкогематол 2009;2:367–73.

8. Billingsley M. Druggable targets and targeted drugs: enhancing the development of new therapeutics. Pharmacology 2008;82:239–44.

9. Oflazoglu E., Audoly L. Evolution of anti- CD20 monoclonal antibody therapeutics in oncology. MAbs 2010 Jan–Feb;2(1):14–9.

10. Licht J. Acute promyelocytic leukemia – weapons of mass differentiation. New Engl J Med 2009;360:928–30.

11. Quintas-Cardama A., Cortes J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 2009;113:1619–30.

12. Melo J., Barnes D. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer 2007;7:441–53.

13. Hazlehurst L., Bewry N., Nair R., Pinilla-Ibarz J. Signaling networks associated with BCR-ABL dependent transformation. Cancer Control 2009;16:100–7.

14. Frazer R., Irvine A., McMullin M. Chronic myeloid leukaemia in the 21st century. Ulster Med J 2007;76:8–17.

15. Hunter T. Treatment for chronic myelogenous leukemia: the long road to imatinib. J Clin Invest 2007;117:2036–43.

16. Colicelli J. ABL tyrosine kinases: evolution of function, regulation and specificity. Sci Signal 2010;3:re6.

17. Sharma S., Settleman J. Exploiting the balance between life and death: targeted cancer therapy and «oncogenic shock». Biochem Pharm 2010;80:666–73.

18. Weinstein I., Joe A. Oncogene addiction. Cancer Res 2008;68:3077–80.

19. Luo J., Solimini N., Elledge S. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 2009;136:823–37.

20. Hanahan D., Weinberg R. Hallmarks of cancer: the next generation. Cell 2011;144:646–74.

21. O’Hare T., Eide C., Deininger M. BCRABL kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 2007;110:2242–9.

22. Weisberg E., Manley P., Cowan-Jacob S. et al. Second generation inhibitors of BCRABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 2007;7:345–56.

23. Collins I. & Workman P. New approaches to molecular cancer therapeutics. Nat Chem Biol 2006;2:689–700.

24. Karaman M., Herrgard S., Treiber D. et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 2008;26:127–32.

25. Grebien F., Hantschel O., Wojcik J. et al. Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis. Cell 2011;147:306–19.

26. Hassan Q., Sharma S., Warmuth M. Allosteric inhibition of BCR-ABL. Cell Cycle 2010;9(18):3710–4.

27. Hantschel O. Allosteric BCR-ABL inhibitors in Philadelphia chromosomepositive acute lymphoblastic leukemia: ovel opportunities for drug combinations to overcome resistance. Haematologica 2012;97:157–9.

28. Cox A., Der C. The Raf inhibitor paradox: unexpected consequences of targeted drugs. Cancer Cell 2010;17:221–3.

29. Cox A., Der C. The RAF inhibitor paradox revisited. Cancer Cell 2012;21:147–9.30. Jackson D., Sood A. Personalized cancer medicine – advances and socio-economic challenges. Nat Rev Clin Oncol 2011;8:735–41.

30. Thangue N., Kerr D. Predictive biomarkers: a paradigm shift towards personalized cancer medicine. Nat Rev Clin Oncol 2011;8:587–96.

31. Bleicher K., Bohm H-J., Muller K., Alanine A. Hit and lead generation: beyond highthroughput screening. Nat Rev Drug Discovery 2003;2:369–78.

32. Чугунов А. Драг-дизайн: как в современном мире создаются новые лекарства. Биомолекула 2004 (http://www.biomolecula.ru/content/15).

33. Schneider G., Fechner U. Computerbased de novo design of drug-like molecules. Nat Rev Drug Discovery 2005;4:649–63.

34. Dittrich P., Manz A. Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discovery 2006;5(3):210–8.

35. Ding S., Schultz P. A role for chemistry in stem cell biology. Nature Biotechnology 2004;22:833–40.

36. Sharma S., Settleman J. Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev 2007;21:3214–31.


Для цитирования:


Домнинский Д.А. Молекулярные механизмы лейкозогенеза. Онкогематология. 2012;7(1):46-54. https://doi.org/10.17650/1818-8346-2012-7-1-46-54

For citation:


Domninskiy D.A. Molecular mechanisms of leukemogenesis. Oncohematology. 2012;7(1):46-54. (In Russ.) https://doi.org/10.17650/1818-8346-2012-7-1-46-54

Просмотров: 606


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)