Preview

Онкогематология

Расширенный поиск

Ex vivo экспансия гемопоэтических стволовых клеток пуповинной крови (обзор литературы)

https://doi.org/10.17650/1818-8346-2012-7-1-35-45

Полный текст:

Аннотация

Пуповинная кровь (ПК) в настоящее время является привлекательным источником гемопоэтических стволовых клеток (ГСК) для трансплантации в детской практике и у взрослых пациентов с различными злокачественными и незлокачественными заболеваниями. Однако ее применение в клинике ограничено низким количеством клеток в трансплантате, что коррелирует с отсроченным приживлением, удлинением времени до восстановления тромбоцитов и нейтрофилов, развитием инфекционных осложнений. Для решения этой проблемы было предпринято несколько попыток, одна из которых – получение достаточного количества гемопоэтических клеток-предшественников путем ex vivo экспансии. В данной статье проведен обзор литературы, посвященный особенностям экспансии ГСК ПК.

Об авторах

Т. В. Шаманская
ФГБУ Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева Минздравсоцразвития России
Россия


Е. Ю. Осипова
ФГБУ Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева Минздравсоцразвития России
Россия


С. А. Румянцев
ФГБУ Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева Минздравсоцразвития России
Россия


Список литературы

1. Knudtzon S. In vitro growth of granulocytic colonies from circulating cells in human cord blood. Blood 1974;43(3):357–61.

2. Mayani H., Lansdorp P.M. Thy-1 expression is linked to functional properties of primitive hematopoietic progenitor cells from human umbilical cord blood. Blood 1994;83(9):2410–7.

3. Vaziri H., Dragowska W., Allsopp R.C. et al. Evidence for a mitotic clock in human hematopoietic stem cells: Loss of telomeric DNA with age. Proc Natl Acad Sci USA 1994;91(21):9857–60.

4. Barker J.N., Weisdorf D., Wagner J. Creation of a double chimera after the transplantation of umbilical-cord blood from two partially matched unrelated donors. N Engl JMed 2001;344:1871.

5. Magro E., Regidor C., Cabrera R. et al. Early hematopoietic recovery after single unit unrelated cord blood transplantation in adults supported by co-infusion of mobilized stem cells from a third party donor. Haematologica 2006;91:640–8.

6. Briddell R.A., Kern B.P., Zilm K.L. et al. Purification of CD34+ cells is essential for optimal ex vivo expansion of umbilical cord blood cells. J Hematother 1997;6(2):145–50.

7. Koller M., Manchel I., Newsom B. et al. Bioreactor expansion of human bone marrow: comparison of unprocessed, density-separated, and CD34-enriched cells. J Hematother 1995;4(3):159–69.

8. Madkaikar M., Ghosh K., Gupta M. et al. Ex vivo expansion of umbilical cord blood stem cells using different combinations of cytokines and stromal cells. Acta Haematol 2007;118(3):153–9.

9. McNiece I. Delivering cellular therapies: Lessons learned from ex vivo culture and clinical applications of hematopoietic cells. Semin Cell Dev Biol 2007;18(6):839–45.

10. Purdy M.H., Hogan C.J., Hami L. et al. Large volume ex vivo expansion of CD34-positive hematopoietic progenitor cells for transplantation. J Hematother 1995;4(6):515–25.

11. De Wynter E.A., Buck D., Hart C. et al. CD34+AC133+ cells isolated from cord blood are highly enriched in long-term cultureinitiating cells, NOD/SCID repopulating cells and dendritic cell progenitors. Stem Cells 1998;16(6):387–96.

12. Forraz N., Pettengell R., Deglesne P.A., McGuckin C.P. AC133+ umbilical cord blood progenitors demonstrate rapid selfrenewal and low apoptosis. Br J Haematol 2002;119(2):516–24.

13. McNiece I., Briddell R. Ex vivo expansion of haemopoietic progenitor cells and mature cells. Exp Hematol 2001;29(1):3–11.

14. Gallacher L., Murdoch B., Wu D.M. et al. Isolation and characterization of human CD34(–)Lin(–) and CD34(+) Lin(–) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood 2000;95(9):2813–20.

15. Hofmeister C.C., Zhang J., Knight K.L. et al. Ex vivo expansion of umbilical cord blood stem cells for transplantation: Growing knowledge from the hematopoietic niche. Bone Marrow Transplant 2007;39(1):11–23.

16. Hess D.A., Meyerrose T.E., Wirthlin L. et al. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood

17. ;104(6):1648–55.

18. Koestenbauer S., Zisch A., Dohr G., Zech N.H. Protocols for hematopoietic stem cell expansion from umbilical cord blood. Cell Transplant 2009;18(10):1059–68.

19. Lam A.C., Li K., Zhang X. B. et al. reclinical ex vivo expansion of cord blood hematopoietic stem and progenitor cells: duration of culture; the media, serum supplements, and growth factors used;

20. and engraftment in NOD/SCID mice. Transfusion 2001;41(12):1567–76.

21. Потапнев М.П., Петевка Н.В., Гончарова Н.В. и др. Пуповинная кровь как источник гемопоэтических и негемопоэтических клеток человека. Материалы международного симпозиума «Актуальные вопросы донорского и персонального хранения стволовых клеток». Клет

22. трансплантол и ткан инж 2009;IV(3):14.

23. Bertolini F., Lazzari L., Lauri E. et al. Cord blood plasmamediated ex vivo expansion of hematopoietic progenitor cells. Bone Marrow Transplant 1994;14:347–53.

24. Koller M.R., Manchel I., Maher R.J. et al. Clinical-scale human umbilical cord blood cell expansion in a novel automated perfusion culture system. Bone Marrow Transplant 1998;21(7):653–63.

25. Hai-Jiang W., Xin-Na D., Hui-Jun D. Expansion of hematopoietic stem/progenitor cells. Am J Hematol 2008;83(12):922–6.

26. Brandt J., Briddell R.A., Srour E.F. et al. Role of c-kit ligand in the expansion of human hematopoietic progenitor cells. Blood 1992;79(3):634–41.

27. Srour E.F., Brandt J.E., Briddell R.A. et al. Long-term generation and expansion of human primitive hematopoietic progenitor cells in vitro. Blood 1993;81(3):661–9.

28. Brugger W., Mocklin W., Heimfeld S. et al. Ex vivo expansion of enriched peripheral blood CD34-progenitor cells by stem cell factor, interleukin-1 beta (IL-1 beta), IL-6, IL-3, interferon-gamma, and erythropoietin. Blood 1993;81(10):2579–84.

29. Shapiro F., Yao T.J., Raptis G. et al. Optimization of conditions for ex vivo expansion of CD34-cells from patients with stage IV breast cancer. Blood 1994;84(10):3567–74.

30. Keller J.R., Ortiz M., Ruscetti F.W. Steel factor (c-kit ligand) promotes the survival of hematopoietic stem/progenitor cells in the absence of cell division. Blood 1995;86:1757–64.

31. McNiece I., Briddell R. Stem cell factor. J Leukoc Biol 1995;58(1):14–22.

32. Sitnicka E., Lin N., Priestley G.V. et al. The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood 1996;87:4998–5005.

33. Shah A.J., Smogorzewska E.M., Hannum C., Crooks G.M. Flt3 ligand induces proliferation of quiescent human bone marrow CD34+ CD38– cells and maintains progenitor cells in vitro. Blood

34. ;87:3563–70.

35. Yonemura Y., Ku H., Lyman S.D., Ogawa M. In vitro expansion of hematopoietic progenitors and maintenance of stem cells: comparison between FLT3/ FLK-2 ligand and KIT ligand. Blood

36. ;89:1915–21.

37. Rusten L.S., Lyman S.D., Veiby O.P., acobsen S.E. The FLT3 ligand is a direct and potent stimulator of the growth of primitive and committed human CD34+ bone marrow progenitor cells in vitro. Blood

38. ;87:1317–25.

39. Solanilla A., Grosset C., Duchez P. et al. FLT3-ligand induces adhesion of haemotopoietic progenitor cells via a very late antigen (VLA)-4- and VLA-5-dependent mechanism. J Haematol 2003;120(5):782–6.

40. Broudy V.C., Lin N.L., Kaushansky K. Thrombopoietin (c-mpl ligand) acts synergistically with erythropoietin, stem cell factor, and interleukin-11 to enhance murine megakaryocyte colony growth and increases megakaryocyte ploidy in vitro. Blood 1995;85:1719–26.

41. Sui X., Tsuji K., Tanaka R., Tajima S. et al. gp130 and c-Kit signalings synergize for ex vivo expansion of human primitive hemopoietic progenitor cells. Proc Natl Acad Sci USA 1995;92:2859–63.

42. Murray L.J., Young J.C., Osborne L.J. et al. Thrombopoietin, flt3, and kit ligands together suppress apoptosis of human mobilized CD34+ cells and recruit primitive CD34+ Thy-1+ cells into rapid division. Exp Hematol 1999;27(6):1019–28.

43. Naparstek E., Hardan Y., Ben-Shahar M. t al. Enhanced marrow recovery by short preincubation of marrow allografts with human recombinant interleukin-3 and granulocyte-macrophage colony-stimulating factor. Blood 1992;80(7):1673–8.

44. Brugger W., Heimfeld S., Беренсон R.J. et al. Reconstitution of hematopoiesis after high-dose chemotherapy by autologous progenitor cells generated ex vivo. N Engl J Med 1995;333(5):283–7.

45. Alcorn M.J., Holyoake T.L., Richmond L. et al. CD34-positiv cells isolated from cryopreserved peripheral-blood progenitor cells can be expanded ex vivo and used for transplantation with little or toxicity. J Clin Oncol 1996;14(6):1839–47.

46. Williams S.F., Lee W.J., Bender J.G. et al. Selection and expansion of peripheral blood CD34+ cells in autologous stem cell transplantation for breast cancer. Blood 1996;87(5):1687–91.

47. Spall E., Quinones R., Giller R. et al. ransplantation of ex vivo expanded cord blood. Biol Blood Marrow Transplant 2002;8:368–76. 42. Pecora A., Stiff P., Jennis A. et al. Prompt and durable engraftment in two older adult patients with high risk chronic myelogenous leukemia (CML) using ex vivo expanded and unmanipulated unrelated umbilical cord blood. Bone Marrow Transplant 2000;25:797–9.

48. Jaroscak J., Goltry K., Smith A. et al. Augmentation of umbilical cord blood (UCB) transplantation with ex vivo expanded UCB cells: results of a phase 1 trial using the Aastrom Replicell System. Blood

49. ;101:5061–67.

50. Peled T., Landau E., Prus E. et al. Cellular copper content modulates differentiation and selfrenewal in cultures of cord blood-derived CD34+ cells. Br J Haematol 2002;116:655–61.

51. Peled T., Gluckman E., Hasson N. et al. Chelatable cellular copper modulates differentiation and self-renewal of cord blood-derived hematopoietic progenitor cells. Exp Hematol 2005;33:1092–1100.

52. Peled T., Mande J. Pre-clinical development of cord blood-derived progenitor cell graft expanded ex vivo with cytokines and the polyamine copper chelator tetraethylenepentamine. Cytotherapy

53. ;6(4):344–55.

54. De Lima M., McMannis J., Gee A., et al. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplant

55. ;41(9):771–8.

56. Robinson S., Niu T., de Lima M. et al. Ex vivo expansion of umbilical cord blood. Cytotherapy 2005;7(3):243–50.

57. Li K., Ooi V.E., Chuen C.K. The plant mannose-binding lectin NTL preserves cord blood haematopoietic stem/progenitor cells in long-term culture and enhances their ex vivo expansion. Br J Haematol 2008;140(1):90–8.

58. Gabius H.J., Gabius S., Zemlyanukhina T.V. et al. Reverse lectin histochemistry: design and application of lycoligands for detection of cell and tissue lectins. Histol & Histopathol 1993;8:369–83.

59. Chivu M., Diaconu C.C., Bleotu C. t al. The comparison of different protocols for expansion of umbilical-cord blood hematopoietic stem cells. J Cell Mol Med 2004;8(2):223–31.

60. Jang Y.K., Jung D.H., Jung M.H. et al. Mesenchymal stem cells feeder layer from human umbilical cord blood for ex vivo expanded growth and proliferation of hematopoietic progenitor cells. Ann Hematol 2006;85:212–25.

61. Moreau I., Duvert V., Caux C. et al. Myofibroblastic stromal cells isolated from human bone marrow induce the proliferation of both early myeloid and B-lymphoid cells. Blood 1993;82:2396–405.

62. Cherry, Yasumizu R., Toki J. et al. Production of hematopoietic stem cellchemotactic factor by bone marrow stromal cells. Blood 1994;83:964–71.

63. Guerriero A., Worford L., Holland H.K. et al. Thrombopoietin is synthesized by bone marrow stromal cells. Blood 1997;90:3444–55.

64. Zhang Y., Li C., Jiang X. et al. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp Hematol 2004;32:657–64.

65. Erices A., Conget P., Minguell J.J. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000;109:235–42.

66. Goodwin H.S., Bicknese A.R., Chien S.N. et al. Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant

67. ;7:581–8.

68. Ye Z.Q., Burkholder J.K., Qiu P. et al. Establishment of an adherent cell feeder layerfrom human umbilical cord blood for support of long-term hematopoietic progenitor cell growth. Proc Natl Acad Sci USA 1994;91:12140–4.

69. McNiece I., Harrington J., Turney J. et al. Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells. Cytotherapy 2004;6:311–7.

70. Walenda T., Bork S., Horn P. et al. Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. J Cell Mol Med 2010;14(1–2):337–50.

71. McNiece I., Kubegov D., Kerzic P. et al. Increased expansion and differentiationof cord blood products using a twostep expansion culture. Exp Hematol 2000;28(10):1181–6.

72. Pecora A.L., Stiff P., LeMaistre C.F. et al. A phase II trial evaluating the safety and effectiveness of the AastromReplicell system for augmentation of low-dose blood stem cell transplantation. Bone Marrow Transplant 2001;28(30):295–303.

73. Meissner P., Herfurth C., Schroder B., Biselli M. Development of a fixed bed bioreactor for the expansion of human hematopoietic progenitor cells. Cytotechnology 1999;30(1–3):227–34.

74. Liu Y., Liu T., Fan X. et al. Ex vivo expansion of hematopoietic stem cells derived from umbilical cord blood in rotating wall vessel. J Biotechnol 2006;124(3):592–601.

75. Bjornsson J.M., Larsson N., Brun A.C. et al. Reduced proliferative capacity of hematopoietic stem cells deficient in Hoxb3 and Hoxb4. Mol Cell Biol 2003;23:3872–83.

76. Miyake N., Brun A.C., Magnusson M. et al. HOXB4-induced self-renewal of hematopoietic stem cells is significantly enhanced by p21 deficiency. Stem Cells 2006;24(3):653–61.

77. Sauvageau G., Thorsteinsdottir U., Eaves C.J. et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev

78. ;9:1753–65.

79. Zhu J., Gianolla D., Zhang Y. et al. NFYa, b, c interacts with USF1/2 to activate the HOXB4 promoter in human hematopoietic cells and repress granulopoiesis. Blood 2003;102:2420–7.

80. Stier S., Cheng T., Dombkowski D. et al. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 2002;99(7):2369–78.

81. Reya T., Duncan A.W., Ailles L. et al. A role for Wnt signalling in self-renewalof haematopoietic stem cells. Nature 2003;423(6938):409–14.

82. Duncan A.W., Rattis F.M., DiMascio L.N. et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005;6(3):314–22.

83. Zhou S., Hayward S.D. Nuclear localization of CBF1 is regulated by interactions with the SMRT corepressor complex. Mol Cell Biol 2001;21:6222–32.

84. Varnum-Finney B., Purton L.E., Yu M. et al. The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood 1998;91(11):4084–91.

85. Karanu F.M., Murdoch B. The Notch Ligand Jagged-1 Represents a Novel Growth Factor of Human Hematopoietic Stem Cells. J Exp Med 2000;192(9):1365–72.

86. Delaney C., Varnum-Finney B., Aoyama K. et al. Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood

87. ;106(8):2693–9.

88. Varnum-Finney B., Brashem-Stein C., Bernstein I.D. Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood 2003;101(5):1784–9.

89. Delaney C., Heimfeld C., Brash cells capable of rapid myeloid reconstitution. Nat Med 2010;16:232–6.

90. Trowbridge J.J., Xenocostas A., Moon R.T., Bhatia M. Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat Med 2006;12(1):89–98.

91. Arai F., Hirao A., Ohmura M. et al. ie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004;188(2): 149–61.

92. Delaney C., Ratajczak M.Z., Laughlin M.J. Strategies to enhance umbilical cord blood stem cell engraftment in adult patients. Expert Rev Hematol 2010;3(3):273–83.

93. Mazur M.A., Davis C.C., Szabolcs P. Ex vivo expansion and Th1/Tc1 maturation of umbilical cord blood T cells by CD3/CD28 costimulation. Biol Blood Marrow Transplant 2008;14(10):1190–6.

94. Boissel L., Tuncer H.H., Betancur M. et a killer cells. Biol Blood Marrow Transplant 2008;14(10):1031–8.

95. Neildez-Nguyen T.M., Wajcman H., Marden M.C. et al. Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo. Nat Biotechnol 2002;20(5):467–72.


Для цитирования:


Шаманская Т.В., Осипова Е.Ю., Румянцев С.А. Ex vivo экспансия гемопоэтических стволовых клеток пуповинной крови (обзор литературы). Онкогематология. 2012;7(1):35-45. https://doi.org/10.17650/1818-8346-2012-7-1-35-45

For citation:


Shamanskaya T.V., Osipova E.Y., Roumiantsev S.A. Umbilical cord bloods hematopoietic stem cells ex vivo expansion (the literature review). Oncohematology. 2012;7(1):35-45. (In Russ.) https://doi.org/10.17650/1818-8346-2012-7-1-35-45

Просмотров: 611


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)