Preview

Онкогематология

Расширенный поиск

Вопросы безопасности генной терапии

Аннотация

   В настоящее время в научных кругах всего мира широко обсуждаются проблемы безопасности при проведении генной терапии у широкой категории пациентов. В данном обзоре суммированы результаты клинических исследований, приведены пояснения относительно побочных эффектов, связанных с генотоксичностью векторной интеграции, обсуждаются факторы, которые могут вызывать случаи генотоксичности, а также предложены подходы, которые позволят сохранить или повысить клиническую эффективность генной терапии с использованием в качестве мишеней гемопоэтических стволовых клеток при существенном снижении риска развития лейкемии и других побочных эффектов, связанных с включением вектора в геном.

Об авторах

С. Е. Ипатов
Минздравсоцразвития России
Россия

ФГУ Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии

Москва



С. А. Румянцев
Минздравсоцразвития России
Россия

Сергей Александрович Румянцев

ФГУ Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии

Москва



Список литературы

1. Larochelle A., Dunbar C. E. Genetic manipulation of hematopoietic stem cells. Semin Hematol 2004; 41: 257—71.

2. Cavazzana-Calvo M., Hacein-Bey S., de Saint Basile G. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669—72.

3. Aiuti A., Slavin S., Aker M. et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410—3.

4. Gaspar H. B., Parsley K. L., Howe S. et al. Gene therapy of Xlinked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004; 364: 2181—7.

5. Hacein-Bey-Abina S., von Kalle C., Schmidt M. et al. A serious adverse event after successful gene therapy for Xlinked severe combined immunodeficiency. N Engl J Med 2003; 348: 255—6.

6. Hacein-Bey-Abina S., von Kalle C., Schmidt M. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415—9.

7. Fischer A., Hacein-Bey-Abina S., Le Deist F. et al. Gene therapy for human severe combined immunodeficiencies. Immunity 2001; 15: 1—4.

8. Hacein-Bey-Abina S., Le Deist F., Carlier F. et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002; 346: 1185—93.

9. Blaese R. M., Culver K. W., Miller A. D. et al. T-lymphocyte directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 1995; 270: 475—80.

10. Kohn D. B., Weinberg K. I., Nolta J. A. et al. Engraftment of genemodified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat Med 1995; 1: 1017—23.

11. Kohn D. B., Hershfield M. S., Carbonaro D. et al. T lymphocytes with a normal ADA gene accumulate after transplantation of transduced autologous umbilical cord blood CD34+ cells in ADA-deficient SCID neonates. Nat Med 1998; 4: 775—80.

12. Nam C. H., Rabbitts T. H. The role of LMO2 in development and in T cell leukemia after chromosomal translocation or retroviral insertion. Mol Ther 2006; 13: 15—25.

13. Dave U. P., Jenkins N. A., Copeland N. G. Gene therapy insertional mutagenesis insights. Science 2004; 303: 333.

14. Woods N. B., Bottero V., Schmidt M. et al. Gene therapy: therapeutic gene causing lymphoma. Nature 2006; 440: 1123.

15. Thrasher A. J., Gaspar H. B., Baum C. et al. Gene therapy: XSCID transgene leukaemogenicity. Nature 2006; 443: 5—6.

16. Donahue R. E., Kessler S. W., Bodine D. et al. Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med 1992; 176: 1125—35.

17. Cornetta K., Morgan R. A., Anderson W. F. Safety issues related to retroviral-mediated gene transfer to humans. Hum Gene Ther 1991; 2: 5—14.

18. Schroder A. R., Shinn P., Chen H. et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002; 110: 521—9.

19. Wu X., Li Y., Crise B., Burgess S. M. Transcription start regions in the human genome are favored targets for MLV integration. Science 2003; 300: 1749—51.

20. Hematti P., Hong B. K., Ferguson C. et al. Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol 2004; 2: 2183—90.

21. Schwarzwaelder K., Howe S. J., Schmidt M. et al. Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo. J Clin Invest 2007; 117: 2241—9.

22. Deichmann A., Hacein-Bey-Abina S., Schmidt M. et al. Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. J Clin Invest 2007; 117: 2225—32.

23. Aiuti A., Cassani B., Andolfi G. et al. Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy. J Clin Invest 2007; 117: 2233—40.

24. Li Z., Dullmann J., Schiedlmeier B. et al. Murine leukemia induced by retroviral gene marking. Science 2002; 296: 497.

25. Seggewiss R., Pittaluga S., Adler R. L. et al. Acute myeloid leukemia is associated with retroviral gene transfer to hematopoietic progenitor cells in a rhesus macaque. Blood 2006; 107: 3865—7.

26. Mitchell R. S., Beitzel B. F., Schroder A. R. et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2004; 2: 234.

27. Urnov F. D., Miller J. C., Lee Y. L. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005; 435: 646—51.

28. Chalberg T. W., Portlock J. L., Olivares E. C. et al. Integration specificity of phage phiC31 integrase in the human genome. J Mol Biol 2006; 357: 28—48.

29. Wang G. P., Ciuffi A., Leipzig J. et al. HIV integration site selection: Analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res 2007; 17: 1186—94.

30. Hacker C. V., Vink C. A., Wardell T. W. et al. The integration profile of EIAV-based vectors. Mol Ther 2006; 14: 536—45.

31. Themis M., Waddington S. N., Schmidt M. et al. Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice. Mol Ther 2005; 12: 763—71.

32. Yant S. R., Wu X., Huang Y. et al. High-resolution genome-wide mapping of transposon integration in mammals. Mol Cell Biol 2005; 25: 2085—94.

33. Nakai H., Wu X., Fuess S. et al. Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J Virol 2005; 79: 3606—14.

34. Donsante A., Vogler C., Muzyczka N. et al. Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors. Gene Ther 2001; 8: 1343—6.

35. Bell P., Wang L., Lebherz C. et al. No evidence for tumorigenesis of AAV vectors in a large-scale study in mice. Mol Ther 2005; 12: 299—306.

36. Suzuki T., Shen H., Akagi K. et al. New genes involved in cancer identified by retroviral tagging. Nat Genet 2002; 32: 166—74.

37. Calmels B., Ferguson C., Laukkanen M. O. et al. Recurrent retroviral vector integration at the Mds1/Evi1 locus in nonhuman primate hematopoietic cells. Blood 2005; 106: 2530—3.

38. Ott M. G., Schmidt M., Schwarzwaelder K. et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006; 12: 401—9.

39. Du D., Copeland N. G. Insertional mutagenesis identifies genes that promote the immortalization of primary murine bone marrow progenitor cells. Blood 2005; 106: 3932—9.

40. Buonamici S., Chakraborty S., Senyuk V., Nucifora G. The role of EVI1 in normal and leukemic cells. Blood Cells Mol Dis 2003; 31: 206—12.

41. Barjesteh van Waalwijk van Doorn-Khosrovani S., Erpelinck C., van Putten W. L. et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood 2003; 101: 837—45.

42. Kustikova O., Fehse B., Modlich U. et al. Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science 2005; 308: 1171—4.

43. Modlich U., Kustikova O. S., Schmidt M. et al. Leukemias following retroviral transfer of multidrug resistance 1 (MDR1) are driven by combinatorial insertional mutagenesis. Blood 2005; 105: 4235—46.

44. Montini E., Cesana D., Schmidt M. et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 2006; 24: 687—96.

45. Modlich U., Bohne J., Schmidt M. et al. Cell culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 2006; 108: 2545—53.

46. Evans-Galea M. V., Wielgosz M. M., Hanawa H. et al. Suppression of clonal dominance in cultured human lymphoid cells by addition of the cHS4 insulator to a lentiviral vector. Mol Ther 2007; 15: 801—9.

47. Trobridge G. D., Miller D. G., Jacobs M. A. et al. Foamy virus vector integration sites in normal human cells. Proc Natl Acad Sci USA 2006; 103: 1498—503.


Рецензия

Для цитирования:


Ипатов С.Е., Румянцев С.А. Вопросы безопасности генной терапии. Онкогематология. 2010;(1):57-63.

For citation:


Ipatov S.E., Roumiantsev S.A. Safety issues of gene therapy. Oncohematology. 2010;(1):57-63. (In Russ.)

Просмотров: 8084


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)