Leukemia-associated immunophenotype of tumor cells in childhood B-precursors acute lymphoblastic leukemia
https://doi.org/10.17650/1818-8346-2012-7-1-61-71
Abstract
To allow minimal residual disease (MRD) monitoring using flow cytometry it is needed the optimal combination of monoclonal antibodies (MA), based on a precise knowledge of leukemic cells immunophenotypic features. Multiple immunophenotypic aberrations in leukemic blasts of B-precursors ALL (BII ALL) were revealed. Asynchronous expression of differentiation antigens on tumor cells occurs in more than 50 % cases. Aberrant myeloid markers expression in 42.6 % BII ALL cases was observed. The main differences between tumor and normal bone marrow cells are the expression intensity of CD19, CD10, CD20, CD38, CD45, CD34 and CD58. Thus, expression intensity pattern of CD19, CD10, CD20, CD38, CD45, CD34, CD58 on tumor cells compared with normal B-lymphocyte precursors allow to use these markers combination to MRD monitoring.
About the Author
L. V. MovchanRussian Federation
References
1. Coustan-Smith E., Sancho J., Hancock M.L. et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2000;96:2691–6.
2. Moppet J., Burke G.A., Steward C.G. et al. The clinical relevance of detection of minimal residual disease in childhood acute lymphoblastic leukaemia. J Clin Pathol 2003;3:249–53.
3. Савва Н.Н. Актуальность и перспективы определения минимальной остаточной болезни при остром лимфобластном лейкозе у детей. Онкол журн 2009;Т. 3;1(9):72–7.
4. van Dongen J.J., Seriu T., Panzer-Grümayer E.R. et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998;352:1731–8.
5. Dworzak M.N., Fröschl G., Printz D. et al. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood 2002;99:1952–8.
6. Borowitz M.J., Devidas M., Hunger S.P. et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood 2008;111:5477–85.
7. Bene M.C., Castoldi G., Knapp W. et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 1995;9:1783–6.
8. Seegmiller A.C., Kroft S.H., Karandikar N.J., McKenna R.W. et al. Characterization of Immunophenotypic Aberrancies in 200 Cases of B Acute Lymphoblastic Leukemia. Am J Clin Pathol 2009;132(6):940–9.
9. Chen W., Karandikar N.J., McKenna R.W., Kroft S.H. Stability of leukemia-associated immunophenotypes in precursor B-lymphoblastic leukemia/lymphoma: a single institution experience. Am J Clin Pathol 2007;127(1):39–46.
10. McKenna R.W., Asplund S.L., Kroft S.H. Immunophenotypic analysis of hematogones (B-lymphocyte precursors) and neoplastic lymphoblasts by 4-color flow cytometry. Leuk Lymphoma 2004;45:277–85.
11. Iwamoto S., Deguchi T., Ohta H. et al. Flow cytometric analysis of de novo acute lymphoblastic leukemia in childhood: report from the Japanese Pediatric Leukemia/ Lymphoma Study Group. Int J Hematol 2011;94:185–92.
Review
For citations:
Movchan L.V. Leukemia-associated immunophenotype of tumor cells in childhood B-precursors acute lymphoblastic leukemia. Oncohematology. 2012;7(1):22-28. (In Russ.) https://doi.org/10.17650/1818-8346-2012-7-1-61-71