Preview

Oncohematology

Advanced search

FLT3 tyrosine kinase in acute non-lymphoblastic leukemias

https://doi.org/10.17650/1818-8346-2006-0-1-2-15-24

About the Authors

A. S. Bavykin
Institute of Molecular Biology RAS
Russian Federation

Moscow



M. A. Volkova
N.N. Blokhin Russian Cancer Research Cancer, Russian Academy of Medical Sciences
Russian Federation

Moscow



References

1. Ason N., Adachi K., Tamura J. et al. Analysis of prognostic factors in newly diagnosed acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. J Clin Oncol 1998;6:78–85.

2. Sanz M.A., Martin G., Rayon C. et al. A modified AIDA protocol with anthracycline-based consolidation results in high antileukemic efficacy and reduced toxicity in newly diagnosed PML/RARa –positive acute promyelocytic leukemia. Blood 1999;94: 3015–21.

3. Sanz M.A., Lo Coco F., Martin G. et al. Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia: a jont study of the PETHEMA and GIMEMA cooperative groups. Blood 2000;96:1247–53.

4. Look A.T. Oncogenic transcription factors in the human acute leukemias. Science 1997;278:1059–64.

5. Caligiuri M.A., Strout M.P., Gilliland D.G. Molecular biology of acute myeloid leukemia. Semin Oncol 1997;24:32–44.

6. Caligiuri M.A., Schichmann S.A., Strout M.P. et al. Molecular rearrangement of the ALL-1 gene in acute myeloid leukemia without cytogenetic evidence of 11q23 chromosomal translocations. Cancer Res 1994;54:372–3.

7. Tanaki N., Kaneko Y., Maseki N. et al. Trisomy 11 in chronic myelomonocytic leukemia: report of two cases and review of the literature. Cancer Genet Cytogenet 1988;30:109–17.

8. Caligiuri M.A., Strout M.P., Lawrence D. et al. Rearrangement of the ALL(MLL) in acute myeloid leukemia with normal cytogenetic Cancer Res 1998;58:55–9.

9. Dohner K., Tobis K., Ulrich R. et al. Prognostic significance of partial tandem duplication of the MLL gene in adult patients 16 to 60 years old with acute myeloid leukemia and normal cytogenetics: a study of the Acute Myeloid Leukemia Study Group Ulm J Clin Oncol 2000;20:3254–61.

10. Schnittger S., Kinkelin U., Schoch C. et al. Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia 2000;14:796–804.

11. Agnes F., Shamoon B., Dina C. et al. Genomic structure of the downstream part of the human FLT3 gene:exon/intron structure conservation among genes encoding receptor tyrosine kinases (RTK) of subclass III. Gene 1994;145:283–8.

12. Rosnet O., Schiff C., Pebusque M.J. et al. Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood 1993;82:1110–9.

13. Maroc N., Rottapel R., Rosnet O. et al. Biochemical characterization and analysis of the transforming potential of the FLT3/FLT2 receptor tyrosine kinase. Oncogene 1993;8:909–18.

14. Brasel K., Escobar S., Anderberg R. et al. Expression of the flt3 receptor and its ligand on hematopoietic cells. Leukemia 1995;9:1212–8.

15. Rasko J.E., Matcalf D., Rossner M.T. et al. The flt3/flt2 ligand: receptor distribution and action on murine haemopoietic cell survival and proliferation. Leukemia 1995; 9:2058–66.

16. Rusten L.S., Lyman S.D., Veiby O.P. et al. The FLT3 ligand is a direct and potent stimulator of the growth of primitive and commited human CD34+ bone marrow progenitor cells in vitro. Blood 1996;87:1317–25.

17. Brashem-Stein C., Flowers D.A., Bernstein I.D. Regulation of colony forming cell generation by flt3 ligand. Br J haematol 1996;94:17–22.

18. Lyman S.D., Brasel K., Roussean A.M. et al. The flt3 ligand: a hematopoietic stem cell factor whose activities are distinct from steel factor. Stem Cells 1994;12:99–107.

19. Ray R.J., Paige C.J., Furlonger C. et al. FLT3 ligand supports the differentiation of early B cell progenitors in the presence of interleukin 11 and interleukin 7. Eur J Immunol 1996;26:1504–10.

20. Rosnet O., Buhring H.J., Marchetto S. et al. Human FLT3/FLT2 receptor tyrosine kinase is expressed on the surface of normal and malignant hematopoietic cells. Leukemia 1996;10:238–48.

21. Marascovsky E., Brasel K., Teepe M. et al. Dramatic increase in the numbers of functionally mature dendric cells in FLT3 ligand-treated mice: multiple dendric cell subpopulations identified. J Exp Med 1996;184:1953–62.

22. Yu H., Fehniger T.A., Fuchshuber P. et al. FLT3 ligand promotes the generation of a distinct CD34(+) human natural killer cell progenitor that responds to interleukin 15. Blood 1998;92:3647–57.

23. Hayakawa F., Towatari M., Kiyoi H. et al. Tandem-duplicated FLT3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL3 dependent cell lines. Oncogene 2000;19:624–31.

24. Muzuki M., Fenski R., Halfter H. et al. FLT3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT pathways. Blood 2000;96:3907–14.

25. Birg F., Rosnet O., Carbuccia N. et al. The expression of FMC, kit and FLT3 in hematopoietic malignancies. Leuk Lymph 1994;13:223–7.

26. Carow C.E., Levenstein M., Kaufmann S.H. et al. Expression of the hematopoietic growth factor receptor FLT3(STK-1/FLK2) in human leukemias. Blood 1996;87:1089–96.

27. Drexler H.C. Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells. Leukemia 1996;10:588–99.

28. Birg F., Courcoul M., Rosnet O. et al. Expression of the FMS/KIT-like gene FLT3 in human acute leukemias of the myeloid and lymphoid lineages. Blood 1992;80:2584–93.

29. Meierhoff G., Dehmel U., Gruss H.J. et al. Expression of FLT3 receptor and FLT3 ligand in human leukemia-lymphoma cell lines. Leukemia 1995;9:1368–72.

30. Nakao M., Yokota S., Iwai T. et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996;10:1911–8.

31. Abu-Duhier F.M., Goodeve A.C., Wilson G.A. et al. FLT3 internal tandem duplication mutations in adult acute myeloid leukemia define a high-risk group. Br J Haematol 2000;111:190–5.

32. Frohling S., Schlenk R.F., Breitruck J. et al. Prognostic significance of activating FLT3 mutations in younger adults (16–60 years) with acute myeloid leukemia and normal cytogenetics: a Study of the AML Study Group Ulm. Blood 2002;100:4372–80.

33. Xu F., Taki T., Yang H.W. et al. Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukemia as well as acute myeloid leukemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukemia in children. Br J Haematol 1999;105:155–62.

34. Yokota S., Kiyoi H., Nakao M. et al. Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 1997;11:1605–9.

35. Nakao M., Janssen J.W., Erz D. et al. Tandem duplication of the FLT3 gene in acute lymphoblastic leukemia: a marker for the monitoring of minimal residual disease. Leukemia 2000;14:525–9.

36. Ishi E., Zaitsu M., Yhara K. et al. High expression but no internal tandem duplication of FLT3 in normal hematopoietic cells. Pediatr Hematol Oncol 1999;16:437–41.

37. Kottaridis P.D., Gale R.E., Frew M.E. et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001;98:1752–9.

38. Kiyio H., Towatari M., Yokota S. et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 1998;12:1333–7.

39. Schnittger S., Schoch C., Dugas M. et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB-subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002;100:59–66.

40. Kottaridis P.D., Gale R.E., Linch D.C. FLT3 mutation and leukemia. Br J Haematol 2003;122:523–38.

41. Yamamoto Y., Kiyio H., Nacano Y. et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001;97:2434–9.

42. Abu-Duhier F.M., Goodeve A.C., Wilson G.A. et al. Identification of novel FLT3 Asp 835 mutations in adult acute myeloid leukemia. Br J Haematol 2001;113:983–8.

43. Schnittger S., Boell I., Schoch C. et al. FLT3 D835/I836 point mutations in acute myeloid leukemia: correlation to cytogenetics, cytomorphology, and prognostis in 1229 patients. Blood 2002;100:329a.

44. Thiede Ch., Stendel Ch., Mohr B. et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB-subtypes and identification of subgroups with poor prognosis. Blood 2002;99:4326–35.

45. Kuchenbauer F., Schoch C., Kern W. et al. Impact of FLT3 mutations and promyelocytic leukemia-breakpoint on clinical characteristics and prognosis in acute promyelocytic leukemia. Br J Haematol 2005;130:196–202.

46. Lacayo N.Y., Meshinchi S., Kinnunan P. et al. Gene expression profiles at diagnosis in de novo childhood AML patients identified FLT3 mutations with good clinical outcomes. Blood 2004;104:2646–54.

47. Zwaan Ch.M., Meshinchi S., Radich J.P. et al. FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance. Blood 2003;102:2387–94.

48. Thiede Ch., Schnittger S., Kern W. et al. Point mutations of the FLT3-receptor tyrosine kinase in patients with acute myeloid leukemia – results of an intergroup analysis of the AML CG study and the AML96 study of the SHG. Blood 2003;102:606a, abstr. 2237.

49. Taketani T., Taki T., Sugita K. et al. FLT3 mutations in the activating loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperploidy. Blood 2004;103:1085–8.

50. Armstrong S.A., Mabon M.E., Silverman L.B. et al. FLT3 mutations in childhood acute lymphoblastic leukemia. Blood 2004;103:3544–6.

51. Boisel N., Cayela J.M., Predhomme C. et al. Prognostic significance of FLT3 internal tandem repeat in patients with de novo acute myeloid leukemia treated with reinforced courses of chemotherapy. Leukemia 2002;16:1699–704.

52. Callens C., Chervet S., Cayuela J.-M. et al. Prognostic implication of FLT3 and RAS mutations in patients with acute promyelocytic leukemia (APL): a retrospective study from the European APL Group. Leukemia 2005;19:1153–60.

53. Gale R.E., Hills R., Kottaridis P.D. et al. No evidence that FLT3 status should be considered as an indicator for transplantation in acute myeloid leukemia (AML): an analysis of 1135 patients, excluding acute promyelocytic leukemia, from the UK MRC AML 10 and 12 trials. Blood 2005;106:3658–65.

54. Meshinchi S., Woods W.G., Stirewalt D.L. et al. Prevalence and prognostic significance of FLT3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001;97:89–94.

55. Whitman S.R., Archer K.J., Feng L. et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3. A Cancer and Leukemia Group B Study. Cancer Res 2001;61:7233–9.

56. Yanada M., Matsou K., Suzuki T. et al. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. Leukemia 2005;19:1345–9.

57. Neubauer A., Dodge R.K., George S.L. et al. Prognostic importance of mutations in the ras protooncogenes in de novo acute myeloid leukemia. Blood 1994;83:1603–11.

58. Radich J.P., Kopecky K.J., Willman C.L. et al. N-ras mutations in adult de novo acute myelogenous leukemia: prevalence and clinical significance. Blood 1990;78:801–7.

59. Wattal E., Preudhomme C., Hecqet B. et al. P53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 1994;84:3148–57.

60. Stirewalt D.L., Kopecky K.J., Meshinchi S. et al. FLT3, RAS and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 2001;97:3589–95.

61. Au W.Y., Fung A., Chim C.S. et al. FLT-3 aberrations in acute promyelocytic leukaemia: clinicopathological associations and prognostic impact. Br J Haematology 2004;125:463–9.

62. Kelly L.M., Yu J.C., Boulton C.L. et al. CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell 2002;1:421–32.

63. Levis M., Allebach J., Tse K.F. et al. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 2002;99:3885–91.

64. Stone R.M., De Angelo D.J., Klimek et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molekule FLT3 tyrosine kinase inhibitor, PKC 412. Blood 2005;105:54–60.


Review

For citations:


Bavykin A.S., Volkova M.A. FLT3 tyrosine kinase in acute non-lymphoblastic leukemias. Oncohematology. 2006;(1-2):15-24. (In Russ.) https://doi.org/10.17650/1818-8346-2006-0-1-2-15-24

Views: 251


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8346 (Print)
ISSN 2413-4023 (Online)