Различия между лейкозными и нормальными кроветворными стволовыми клетками
https://doi.org/10.17650/1818-8346-2006-0-1-2-5-9
Список литературы
1. Lapidot T., Sirard C., Vormoor J. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994;367:645—8.
2. Bonnet D., Dick J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3:730—37.
3. Reya T., Morrison S.J., Clarke M.F. et al. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105—11.
4. Pardal R., Clarke M.F., Morrison S.J. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003;3:895—902.
5. Park I.K., Qian D., Kiel M. et al. Bmi-1 is required for maintenance of adult selfrenewing haematopoietic stem cells. Nature 2003;423:302—5.
6. Lessard J., Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003;423:255—60.
7. Molofsky A.V., Pardal R., Morrison S.J. Diverse mechanisms regulate stem cell selfrenewal. Curr Opin Cell Biol 2004;16:700—7.
8. Taipale J., Beachy P.A. The Hedgehog and Wnt signalling pathways in cancer. Nature 2001;411:349—54.
9. Purton L.E., Dworkin S., Olsen G.H. et al. RARgamma is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation. J Exp Med 2006;203:1283—93.
10. Satoh C., Ogata K. Hypothesis: Myeloidrestricted hematopoietic stem cells with selfrenewal capacity may be the transformation site in acute myeloid leukemia. Leuk Res 2006;30:491—5.
11. Reya T., Clevers H. Wnt signalling in stem cells and cancer. Nature 2005;434:843—50.
12. Molofsky A.V., He S., Bydon M. et al. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 2005;19:1432—7.
13. Lowe S.W., Sherr C.J. Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 2003;13:77—83.
14. Cortes J., O'Brien S., Kantarjian H. Discontinuation of imatinib therapy after achieving a molecular response. Blood 2004;104:2204—5.
15. Blair A., Hogge D.E., Ailles L.E. et al. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 1997;89:3104—12.
16. Blair A., Sutherland H.J. Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp Hematol 2000;28:660—71.
17. Jordan C.T., Upchurch D., Szilvassy S.J. et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 2000;14:1777—84.
18. Brendel C., Mohr B., Schimmelpfennig C. et al. Detection of cytogenetic aberrations both in CD90 (Thy-1)-positive and (Thy1)—negative stem cell (CD34) subfractions of patients with acute and chronic myeloid leukemias. Leukemia 1999;13:1770—75.
19. Reya T., Duncan A.W., Ailles L. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003;423:409—14.
20. Terpstra W., Prins A., Ploemacher R.E. et al. Long-term leukemia-initiating capacity of a CD34-subpopulation of acute myeloid leukemia. Blood 1996;87:2187—94.
21. Zipori D. The nature of stem cells: state rather than entity. Nat Rev Genet 2004;5:873—8.
22. Fortunel N.O., Otu H.H., Ng H.H. et al. Comment on "Stemness': transcriptional profiling of embryonic and adult stem cells" and "a stem cell molecular signature". Science 2003;302:393.
23. Civin C.I., Almeida-Porada G., Lee M.J. et al. Sustained, retransplantable, multilineage engraftment of highly purified adult human bone marrow stem cells in vivo. Blood 1996;88:4102—9.
24. Krause D.S., Fackler M.J., Civin C.I. et al. CD34: structure, biology, and clinical utility. Blood 1996;87:1—13.
25. Bhatia M., Bonnet D., Murdoch B. et al. A newly discovered class of human hematopoietic cells with SCIDrepopulating activity. Nat Med 1998;4:1038—45.
26. Zhu J., Emerson S.G. Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 2002;21:3295—313.
27. Stein M.I., Zhu J., Emerson S.G. Molecular pathways regulating the selfrenewal of hematopoietic stem cells. Exp Hematol 2004;32:1129—36.
28. Begley C.G., Green A.R. The SCL gene: from case report to critical hematopoietic regulator. Blood 1999;93:2760—70.
29. Reynaud D., Ravet E., Titeux M. et al. SCL/TAL1 expression level regulates human hematopoietic stem cell self-renewal and engraftment. Blood 2005;106:2318—28.
30. Lecuyer E., Hoang T. SCL: from the origin of hematopoiesis to stem cells and leukemia. Exp Hematol 2004;32:11—24.
31. Licht J.D. AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene 2001;20:5660—79.
32. Mulloy J.C., Cammenga J., MacKenzie K.L. et al. The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood 2002;99:15—23.
33. de Guzman C.G., Warren A.J., Zhang Z. et al. Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol Cell Biol 2002;22:5506—17.
34. Zhu J., Giannola D.M., Zhang Y. et al. NF-Y cooperates with USF1/2 to induce the hematopoietic expression of HOXB4. Blood 2003;102:2420—7.
35. Sauvageau G., Thorsteinsdottir U., Eaves C.J. et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 1995;9:1753—65.
36. Krosl J., Beslu N., Mayotte N. et al. The competitive nature of HOXB4-transduced HSC is limited by PBX1: the generation of ultra-competitive stem cells retaining full differentiation potential. Immunity 2003;18:561—71.
37. Golub T.R., Slonim D.K., Tamayo P. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999;286:531—7.
38. Ellisen L.W., Bird J., West D.C. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991;66:649—61.
39. van der Lugt N.M., Alkema M., Berns A. et al. The Polycomb-group homolog Bmi-1 is a regulator of murine Hox gene expression. Mech Dev 1996;58:153—64.
40. Passegue E., Wagner E.F., Weissman I.L. JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell 2004;119:431—43.
41. Metcalf D., Dakic A., Mifsud S. et al. Inactivation of PU.1 in adult mice leads to the development of myeloid leukemia. Proc Natl Acad Sci USA 2006;103:1486—91.
42. Mueller B.U., Pabst T., Osato M. et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 2002;100:998—1007.
43. Rosenbauer F., Koschmieder S., Steidl et al. Effect of transcription-factor concentrations on leukemic stem cells. Blood 2005;106:1519—24.
44. Moore M.A. Converging pathways in leukemogenesis and stem cell self-renewal. Exp Hematol 2005;33:719—37.
45. Guan Y., Gerhard B., Hogge D.E. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood 2003;101:3142—9.
46. Dean M., Fojo T., Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005;5:275—84.
47. Konopleva M., Zhao S., Hu W. et al. The anti-apoptotic genes Bcl-X(L) and Bcl-2 are over-expressed and contribute to chemoresistance of non-proliferating leukaemic CD34+ cells. Br J Haematol 2002;118:521—34.
48. Guan Y., Hogge D.E. Proliferative status of primitive hematopoietic progenitors from patients with acute myelogenous leukemia (AML). Leukemia 2000;14:2135—41.
49. Ailles L.E., Humphries R.K., Thomas T.E. et al. Retroviral marking of acute myelogenous leukemia progenitors that initiate long-term culture and growth in immunodeficient mice. Exp Hematol 1999;27:1609—20.
50. List A.F., Kopecky K.J., Willman C.L. et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood 2001;98:3212—20.
51. Baer M.R., George S.L., Dodge R.K. et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood 2002;100:1224—32.
52. Guzman M.L., Swiderski C.F., Howard D.S. et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA 2002;99:16220—5.
53. Guzman M.L., Rossi R.M., Karnischky L. et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 2005;105:4163—9.
54. Guzman M.L., Upchurch D., Grimes B. et al. Expression of tumor-suppressor genes interferon regulatory factor 1 and deathassociated protein kinase in primitive acute myelogenous leukemia cells. Blood 2001;97:2177—9.
55. Guzman M.L., Neering S.J., Upchurch D. et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 2001;98:2301—7.
56. Xu Q., Simpson S.E., Scialla T.J. et al. Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 2003;102:972—80.
57. Yilmaz O.H., Valdez R., Theisen B.K. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemiainitiating cells. Nature 2006;441:475—82.
58. Chen Z., Trotman L.C., Shaffer D. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005;436:725—30.
59. Cheng T., Rodrigues N., Shen H. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 2000;287:1804—8.
60. Hope K.J., Jin L., Dick J.E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004;5:738—43.
61. McCulloch E.A., Howatson A.F., Buick R.N. et al. Acute myeloblastic leukemia considered as a clonal hemopathy. Blood Cells 1979;5:261—82.
62. Fialkow P.J., Singer J.W., Raskind W.H. et al. Clonal development, stem-cell differentiation, and clinical remissions in acute nonlymphocytic leukemia. N Engl J Med 1987;317:468—73.
63. Till J.E., McCulloch E.A., Siminovitch L. A Stochastic Model of Stem Cell Proliferation, Based on the Growth of Spleen Colony-Forming Cells. Proc Natl Acad Sci USA 1964;51:29—36.
64. Korn A.P., Henkelman R.M., Ottensmeyer F.P. et al. Investigations of a stochastic model of haemopoiesis. Exp Hematol 1973;1:362—75.
65. Jamieson C.H., Ailles L.E., Dylla S.J. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004;351:657—67.
66. Cozzio A., Passegue E., Ayton P.M. et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003;17:3029—35.
67. Passegue E., Jamieson C.H., Ailles L.E. et al. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 2003;100 (Suppl 1):11842—9.
68. Krivtsov A.V., Twomey D., Feng Z. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLLAF9. Nature 2006;442:818—22.
69. Huntly B.J., Shigematsu H., Deguchi K. et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004;6:587—96.
70. So C.W., Karsunky H., Passegue E. et al. MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell 2003;3:161—71.
Рецензия
Для цитирования:
Дризе Н.И. Различия между лейкозными и нормальными кроветворными стволовыми клетками. Онкогематология. 2006;(1-2):5-9. https://doi.org/10.17650/1818-8346-2006-0-1-2-5-9
For citation:
Drize N.I. Differences between the leukemic and normal hemopoietic stem cells. Oncohematology. 2006;(1-2):5-9. (In Russ.) https://doi.org/10.17650/1818-8346-2006-0-1-2-5-9